Fundamental Physics at Extreme High Energies

. Michael Kachelrieß

NTNU, Trondheim

Outline:

- Introduction
- Testing (new?) strong interactions
- Lorentz invariance violation
- Topological defects & superheavy dark matter
- Summary

Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$ • Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$

3

- 4 同 6 4 日 6 4 日 6

- Bethe-Heitler model: $N_{\max} \propto E_0$ and $X_{\max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$
- $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

3

- 4 週 ト - 4 三 ト - 4 三 ト

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$

 $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$

 $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

- Bethe-Heitler model: $N_{
 m max} \propto E_0$ and $X_{
 m max} \propto \ln(E_0)$
- superposition model: nuclei = A shower with $E = E_0/A$

 $\Rightarrow X_{\max} \propto -\ln(A)$ and $\mathsf{RMS}(X_{\max})$ reduced

• $\mathsf{RMS}(X_{\max})$ has smaller theoretical error than X_{\max}

Michael Kachelrieß (NTNU Trondheim)

- 4 同 6 4 日 6 4 日 6

Nuclear composition via X_{\max} :

Nuclear composition via $RMS(X_{max})$ from Auger:

Mixed composition:

Nuclear composition from HiRes/TA:

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\mathsf{RMS}(X_{\max})$ favors heavy
 - energy spectrum, X_{max} and $RMS(X_{max})$ difficult to fit
- experimental discrepancy: $HiRes/TA \Leftrightarrow Auger$
 - X_{\max}
 - $\mathsf{RMS}(X_{\max})$
- discrepancy experiment ⇔ theory:
 - energy ground array/fluoresence ~ 1.2
 - $\blacktriangleright\,$ muon number exp/MC ~ 2

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\mathsf{RMS}(X_{\max})$ favors heavy
 - energy spectrum, X_{max} and $\mathsf{RMS}(X_{max})$ difficult to fit
- experimental discrepancy: HiRes/TA ⇔ Auger
 - X_{\max}
 - $\mathsf{RMS}(X_{\max})$
- discrepancy experiment ⇔ theory:
 - energy ground array/fluoresence ~ 1.2
 - $\blacktriangleright\,$ muon number exp/MC ~ 2

What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\mathsf{RMS}(X_{\max})$ favors heavy
 - energy spectrum, X_{max} and $RMS(X_{max})$ difficult to fit
- experimental discrepancy: HiRes/TA ⇔ Auger
 - X_{\max}
 - $\mathsf{RMS}(X_{\max})$
- discrepancy experiment ⇔ theory:
 - energy ground array/fluoresence ~ 1.2
 - $\blacktriangleright\,$ muon number exp/MC ~ 2

Comparison of MCs to LHC data: Energy flow

Michael Kachelrieß (NTNU Trondheim)

8th Tours Symposium 11 / 28

What can/should be changed?

Knob	S _{mu}	<x<sub>max></x<sub>	RMS _{Xmax}
Compositionheavier	^		
Mixed composition	↑ (mean of mix)		↑ (broader lots)
Cross section 🛧			
Diffractive fracf _{el} \blacklozenge	^		
Multiplicity 🛧	^		
π^0 fraction Ψ	^		
Strangeness, B-Bbar			

3

・ロン ・四 ・ ・ ヨン

What can/should be changed?

Knob	S _{mu}	<x<sub>max></x<sub>	RMS _{xmax}
Compositionheavier	↑		
Mixed composition	↑ (mean of mix)		↑ (broader lots)
Cross section 🛧			
Diffractive fracf _{el} \blacklozenge	^		
Multiplicity 🛧	↑		
π^0 fraction Ψ	^		
Strangeness, B-Bbar			

High energy is not enough

• Generically, new physics requires not only large s, but also large momentum transfer t

< A ▶

High energy is not enough

• Generically, new physics requires not only large s, but also large momentum transfer t

High energy is not enough

• Generically, new physics requires not only large s, but also large momentum transfer t

• Exceptions: large extra dimensions, classicalisation, ...

Large extra dimensions

- t chanel exchange of KK gravitons $\sigma \sim s^2/M_D^6$
- black hole production, if $b \lesssim R_s$ with $\sigma \sim \pi R_s^2$

Large extra dimensions

- t chanel exchange of KK gravitons $\sigma \sim s^2/M_D^6$
- black hole production, if $b \lesssim R_s$ with $\sigma \sim \pi R_s^2$

Large extra dimensions

- t chanel exchange of KK gravitons $\sigma \sim s^2/M_D^6$
- black hole production, if $b \lesssim R_s$ with $\sigma \sim \pi R_s^2$

no deviations from SM at LHC

• motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?

3

∃ ► < ∃ ►</p>

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- $\Rightarrow\,$ reaction thresholds: changes lower, introduces upper, opens new channels
- ⇒ vacuum birefringence
- \Rightarrow generically preferred reference frame
- \Rightarrow sideral anisotropies
- \Rightarrow generically breaking of CPT

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- ⇒ reaction thresholds: changes lower, introduces upper, opens new channels
- ⇒ vacuum birefringence
- \Rightarrow generically preferred reference frame
- \Rightarrow sideral anisotropies
- \Rightarrow generically breaking of CPT

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- ⇒ reaction thresholds: changes lower, introduces upper, opens new channels
- ⇒ vacuum birefringence
- \Rightarrow generically preferred reference frame
- \Rightarrow sideral anisotropies
- \Rightarrow generically breaking of CPT

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- $\Rightarrow\,$ reaction thresholds: changes lower, introduces upper, opens new channels
- \Rightarrow vacuum birefringence
- ⇒ generically preferred reference frame
- \Rightarrow sideral anisotropies
- \Rightarrow generically breaking of CPT

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- ⇒ reaction thresholds: changes lower, introduces upper, opens new channels
- ⇒ vacuum birefringence
- \Rightarrow generically preferred reference frame
- ⇒ sideral anisotropies
- \Rightarrow generically breaking of CPT

- motivation: has Planck length $L_{\rm Pl} = \sqrt{\hbar G/c^3}$ any rôle for space-time despite SR?
- if yes: modifies dispersion relation

$$E^{2} = m^{2} + \boldsymbol{p}^{2} + f(E, \boldsymbol{p}, M_{\rm Pl})$$

= $m^{2} + \boldsymbol{p}^{2} + \eta^{(1)} |\boldsymbol{p}| M_{\rm Pl} + \eta^{(2)} |\boldsymbol{p}|^{2} + \eta^{(3)} |\boldsymbol{p}|^{3} / M_{\rm Pl} + \dots$

- \Rightarrow ToF delays (Opera, GRBs, AGN flares, SN1987a)
- $\Rightarrow\,$ reaction thresholds: changes lower, introduces upper, opens new channels
- ⇒ vacuum birefringence
- \Rightarrow generically preferred reference frame
- \Rightarrow sideral anisotropies
- ⇒ generically breaking of CPT

implementation:

 EFT: SM plus composite operators of SM⊕ tensor fields with non-zero vev ⇒ preferred reference system

implementation:

- EFT: SM plus composite operators of SM⊕ tensor fields with non-zero vev ⇒ preferred reference system
- Example: gauge-invariant, CPT-even modification of QED

$$\mathcal{L} = -\frac{1}{4} \left(\eta^{\mu\rho} \eta^{\nu\sigma} - \kappa^{\mu\nu\rho\sigma} \right) \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} \right)$$

 κ : 20 - 1 = 19 independent dimensionless numbers to be limited 10 lead to birefringence, $|\kappa| < 10^{-32}$, 9 constraint by UHECR

implementation:

- EFT: SM plus composite operators of SM \oplus tensor fields with non-zero vev \Rightarrow preferred reference system
- Example: gauge-invariant, CPT-even modification of QED

$$\mathcal{L} = -\frac{1}{4} \left(\eta^{\mu\rho} \eta^{\nu\sigma} - \kappa^{\mu\nu\rho\sigma} \right) \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} \right)$$

 $\kappa:~20-1=19$ independent dimensionless numbers to be limited 10 lead to birefringence, $|\kappa|<10^{-32}$, 9 constraint by UHECR

- Double special relativity (DSR):
 - ► GR: laws of physics do not contain any scale of length or velocity
 - ER: laws of physics do not contain any scale of length, but one fundamental velocity, c
 - DSR: laws of physics contain a fundamental scale of length and of velocity

- 4 同 6 4 日 6 4 日 6

implementation:

- EFT: SM plus composite operators of SM \oplus tensor fields with non-zero vev \Rightarrow preferred reference system
- Example: gauge-invariant, CPT-even modification of QED

$$\mathcal{L} = -\frac{1}{4} \left(\eta^{\mu\rho} \eta^{\nu\sigma} - \kappa^{\mu\nu\rho\sigma} \right) \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} \right)$$

 $\kappa:~20-1=19$ independent dimensionless numbers to be limited 10 lead to birefringence, $|\kappa|<10^{-32}$, 9 constraint by UHECR

- Double special relativity (DSR):
 - ▶ GR: laws of physics do not contain any scale of length or velocity
 - ER: laws of physics do not contain any scale of length, but one fundamental velocity, c
 - DSR: laws of physics contain a fundamental scale of length and of velocity

イロト 人間ト イヨト イヨト

implementation:

- EFT: SM plus composite operators of SM \oplus tensor fields with non-zero vev \Rightarrow preferred reference system
- Example: gauge-invariant, CPT-even modification of QED

$$\mathcal{L} = -\frac{1}{4} \left(\eta^{\mu\rho} \eta^{\nu\sigma} - \kappa^{\mu\nu\rho\sigma} \right) \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} \right)$$

 $\kappa:~20-1=19$ independent dimensionless numbers to be limited 10 lead to birefringence, $|\kappa|<10^{-32}$, 9 constraint by UHECR

- Double special relativity (DSR):
 - ▶ GR: laws of physics do not contain any scale of length or velocity
 - ER: laws of physics do not contain any scale of length, but one fundamental velocity, c
 - DSR: laws of physics contain a fundamental scale of length and of velocity

イロト 人間ト イヨト イヨト

LIV becomes important, when

$$\frac{m^2}{p^2} \sim \frac{p^{n-2}}{M_{\rm Pl}^{n-2}}$$

or

$$p_{\rm cr} \sim \sqrt[n]{m^2 M_{\rm Pl}^{n-2}}$$

n	$p_{ m cr}$ for $ u$	$p_{ m cr}$ for e^-	$p_{ m cr}$ for p
2	$p \sim m_{\nu} \sim 1 \mathrm{eV}$	$p \sim m_e$	$p \sim m_p$
3	$\sim {\sf GeV}$	$\sim 10~{\rm TeV}$	$\sim 1{\rm PeV}$
4	$\sim 100{\rm TeV}$	$\sim 100{\rm PeV}$	$\sim 3{\rm EeV}$

< A

Bounds on LIV parameters from UHECRs:

- threshold for GZK may be changed
- GZK photons: upper threshold $E_{\rm max}$ for $\gamma\gamma \rightarrow e^+e^-$ introduced
- if $E_{\rm max} \ll 10^{20}\,{\rm eV},$ photon fraction too large
- $\bullet\,$ if some UHE photons observed, photon decay $\gamma \to e^+e^-$ can be limited

Bounds on dim=5 LIV parameters: $\xi \leftrightarrow e$ and $\eta \leftrightarrow \gamma$

Michael Kachelrieß (NTNU Trondheim)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bounds on dim=6 LIV parameters: $\xi \leftrightarrow e$ and $\eta \leftrightarrow \gamma$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bounds on dim=6 LIV parameters: $\xi \leftrightarrow e$ and $\eta \leftrightarrow \gamma$

If LIV exists, then probably not of EFT type

Michael Kachelrieß (NTNU Trondheim)

Fundamental Physics at UHE

8th Tours Symposium 19 / 28

Bottom-up versus top-down models

Bottom-up models

- acceleration in electromagnetic fields
- \Rightarrow charged particles: protons, nuclei, electrons
 - photons and neutrinos as secondaries

Top-down models ● relics from early universe ↔ DM ● non-thermal or thermal ● point particle or non-perturbative solutions > stable or decaying ● fragmentation products: mainly photons, neutrinos

4 1 1 1 4 1

Top-Down Models

UHECR primaries are produced by decays of supermassive particle X with $M_X\gtrsim 10^{12}~{\rm GeV}.$

- topological defects: monopoles, strings, ...
- superheavy metastable particles

Advantages:

- no acceleration problem
- no visible sources
- if $X \in \mathsf{CDM}$, no GZK-cutoff
- theoretically motivated; testable predictions

• Small fluctuations of field Φ obey

 $\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$

 $\bullet\,$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

• If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.

 $\bullet\,$ Small fluctuations of field Φ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

- If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\rm eff}^2 = M^2 a^2 + (6\xi - 1)\frac{a''}{a}$$

leads to particle production

 $\bullet\,$ Small fluctuations of field $\Phi\,$ obey

$$\ddot{\varphi}_k + \left[k^2 + m_{\text{eff}}^2(\tau)\right]\varphi_k = 0$$

- If $m_{\rm eff}$ is time dependent, vacuum fluctuations will be transformed into real particles.
- \Rightarrow expansion of Universe,

$$m_{\rm eff}^2 = M^2 a^2 + (6\xi - 1)\frac{a''}{a}$$

leads to particle production

• In inflationary cosmology

$$\Omega_X h^2 \sim \left(\frac{M_X}{10^{12} \text{GeV}}\right)^2 \frac{T_{RH}}{10^9 \text{GeV}}$$

dependent only on cosmology, for $M_X \lesssim H_I$

Signatures of SHDM decays

Signatures of SHDM decays

- flat spectra $dE/E^{1.9}$ up to $m_X/2$
- composition: $\gamma/p \gg 1$, large neutrino fluxes, no nuclei

Signatures of SHDM decays

- ${\bullet}\,$ flat spectra $dE/E^{1.9}$ up to $m_X/2$
- \bullet composition: $\gamma/p \gg 1$, large neutrino fluxes, no nuclei
- galactic anisotropy:

- + "generic" in SUSY-GUTs
- + produced during reheating
 - typical density: one per horizon/correlation length
 - main energy loss low-energy radiation?

[Allen, Shellard '06]

- box 2ct
- matter epoch
- scaling regime

- 4 同 6 4 日 6 4 日 6

Michael Kachelrieß (NTNU Trondheim)

8th Tours Symposium 25 / 28

- + "generic" in SUSY-GUTs
- + produced during reheating
- typical density: one per horizon/correlation length
- main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces

- + "generic" in SUSY-GUTs
- + produced during reheating
- typical density: one per horizon/correlation length
- main energy loss low-energy radiation?

favourable models for UHECRs:

- monopole-antimonopole pairs
- hybrid defects: cosmic necklaces
 - $G \to H \otimes U(1) \to H \otimes Z_2$
 - monopoles $M \sim \eta_m/e$ connected by strings $\mu_s \sim \eta_s^2$
 - parameter $r = M/(\mu d)$:
 - $r \ll 1$ normal string dynamics
 - $r \gg 1$ non-rel. string network

Status of topological defect models – necklaces:

Michael Kachelrieß (NTNU Trondheim)

Status of topological defect models – necklaces:

- large neutrino fluxes possible
- UHE photon fraction reduced

- composition of UHECR is crucial both for astrophysics and strong interactions
- exremely strong limits on ETF-like LIV
- LHC limits on large extra dimensions
- no positive evidence for superheavy dark matter from its three key signatures:
 - spectral shape
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate topological defects are generic prediction of (SUSY-) GUTs
- ⇒ both should be searched for as subdominant sources of UHECRs; potential for UHE neutrinos

Michael Kachelrieß (NTNU Trondheim)

- composition of UHECR is crucial both for astrophysics and strong interactions
- exremely strong limits on ETF-like LIV
- LHC limits on large extra dimensions
- no positive evidence for superheavy dark matter from its three key signatures:
 - spectral shape
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate topological defects are generic prediction of (SUSY-) GUTs
- ⇒ both should be searched for as subdominant sources of UHECRs; potential for UHE neutrinos

Michael Kachelrieß (NTNU Trondheim)

- composition of UHECR is crucial both for astrophysics and strong interactions
- exremely strong limits on ETF-like LIV
- LHC limits on large extra dimensions
- no positive evidence for superheavy dark matter from its three key signatures:
 - spectral shape
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate topological defects are generic prediction of (SUSY-) GUTs
- ⇒ both should be searched for as subdominant sources of UHECRs; potential for UHE neutrinos

Michael Kachelrieß (NTNU Trondheim)

- composition of UHECR is crucial both for astrophysics and strong interactions
- exremely strong limits on ETF-like LIV
- LHC limits on large extra dimensions
- no positive evidence for superheavy dark matter from its three key signatures:
 - spectral shape
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate topological defects are generic prediction of (SUSY-) GUTs
- ⇒ both should be searched for as subdominant sources of UHECRs; potential for UHE neutrinos

Michael Kachelrieß (NTNU Trondheim)

- composition of UHECR is crucial both for astrophysics and strong interactions
- exremely strong limits on ETF-like LIV
- LHC limits on large extra dimensions
- no positive evidence for superheavy dark matter from its three key signatures:
 - spectral shape
 - photons
 - galactic anisotropy
- SHDM remains an interesting DM candidate topological defects are generic prediction of (SUSY-) GUTs

⇒ both should be searched for as subdominant sources of UHECRs; potential for UHE neutrinos

Michael Kachelrieß (NTNU Trondheim)