Potential UHECR accelerators: constraints, demography, CR composition

Sergey Troitsky Institute for Nuclear Research, Moscow

(partly with Oleg Kalashev and Ksenia Ptitsyna)

Trondheim, 17/06/2009

1. Constraints on astrophysical accelerators:

• "Hillas plot"

important experimental updates

- radiation losses
 for specific mechanisms
- 2. Implications for spectrum and composition
 - acceleration capabilities
 - demography: populations of sources number of sources, distance to the nearest source
 - injected spectra and composition acceleration mechanism + astro-chemistry
 - propagation observations

Constraints on astrophysical accelerators: "Hillas plot" + radiation losses

(electrodynamics)

Assumption:

 particle is accelerated by electromagnetic forces inside an astrophysical accelerator

General limitations:

- geometry energetic particles leave the accelerator
- radiation losses

accelerating charges radiate and loose energy

geometry: the Hillas criterion: Larmor radius < size of accelerator (otherwise lefts the accelerator)

Constraints on sources

radiation losses

 \mathcal{E} gain rate < \mathcal{E} loss rate

$$\frac{d\mathcal{E}^+}{dt} > \frac{d\mathcal{E}^-}{dt}$$

depend on the acceleration mechanism

$$\frac{d\mathcal{E}^+}{dt} = ZeE ~\sim ZeB$$

$$\frac{d\mathcal{E}^{-}}{dt} = \frac{2Z^4 e^4}{3m^2 c^3} \left(\frac{\mathcal{E}}{mc^2}\right)^2 \left(\left(\mathbf{E} + \frac{1}{c}\left[\mathbf{v} \times \mathbf{H}\right]\right)^2 - \frac{1}{c^2} (\mathbf{E} \cdot \mathbf{v})^2\right)$$

Constraints on sources radiation losses

\mathcal{E} gain rate < \mathcal{E} loss rate

depend on the acceleration mechanism $\frac{d\mathcal{E}^{-}}{dt} = \frac{2Z^4 e^4}{3m^2 c^3} \left(\frac{\mathcal{E}}{mc^2}\right)^2 \left(\left(\mathbf{E} + \frac{1}{c}[\mathbf{v} \times \mathbf{H}]\right)^2 - \frac{1}{c^2}(\mathbf{E} \cdot \mathbf{v})^2\right)$ $\frac{d\mathcal{E}^-}{dt} \propto F_\perp^2 + \left(1 - \frac{v^2}{c^2}\right) F_{||}^2$ synchrotron curvature $\frac{d\mathcal{E}^{-}}{dt} = \frac{2Z^2 e^2 c}{3R^2} \left(\frac{\mathcal{E}}{Am_n c^2}\right)^4$ $\frac{d\mathcal{E}^-}{dt} = \frac{2}{3} \left(\frac{Ze}{Am_nc^2}\right)^4 c \,\mathcal{E}^2 B^2$

Limitations due to radiation losses:

disagreement on their importance?

• protons can be accelerated "to $(3-5) \times 10^{21} \text{ eV} \dots$ At energies $\geq 10^{22} \text{ eV}$ the cosmic ray primaries have to be heavy nuclei" *Aharonyan et al. 2002*

• "Practically, all known astronomical sources are not able to produce cosmic rays with energies near few times 10²⁰ eV" *Medvedev 2003*

- diffusive (shocks)
- inductive (one-shot)
 - synchrotron-dominated losses
 - curvature-dominated losses

diffusive (shocks)

plot: Medvedev 2003

gets a hit from time to time, radiates synchrotron continuously

diffusive (shocks)

gets a hit from time to time, radiates synchrotron continuously

- inductive (one-shot)
 - synchrotron-dominated losses
 - curvature-dominated losses

inductive (one-shot)

plot: Medvedev 2003

is accelerated and radiates continuously

diffusive (shocks)

gets a hit from time to time, radiates synchrotron continuously

inductive (one-shot)

is accelerated and radiates continuously

- synchrotron-dominated losses
- curvature-dominated losses

general field configuration

diffusive (shocks)

gets a hit from time to time, radiates synchrotron continuously

inductive (one-shot)

is accelerated and radiates continuously

- synchrotron-dominated losses
- curvature-dominated losses

general field configuration

specific field configuration

• diffusive (shocks)

gets a hit from time to time, radiates synchrotron continuously

inductive (one-shot)

is accelerated and radiates continuously

- synchrotron-dominated losses
- curvature-dominated losses

general field

Both geometrical and radiation-loss constraints are expressed in terms of B and R

Hillas plot!

the (original) Hillas plot

Hillas 1984

(almost) no changes since then?

1984 – 2008: revolution in astronomy!

HST, Chandra, XMM, VLBA.... high-precision instruments

quantitative constraints on magnetic fields

update the Hillas plot!

B measurements...

AGN central parts

The updated Hillas plot (+ radiation losses)

The updated Hillas plot (+ radiation losses)

The updated Hillas plot (+ radiation losses)

iron nuclei 10²⁰ eV

Potential sources

conclusions about 10²⁰ eV UHECR sources:

• protons

- powerful, distant, rare active galaxies
- galaxy clusters

heavy nuclei

- low-power, nearby, numerous active galaxies

Populations of sources quantifiable!

- know acceleration capabilities of particular sources
- know demography (density/ distance from us)
- know chemical composition in the source
- acceleration mechanism \rightarrow injection spectrum
- propagation \rightarrow observables

Example scenarios:

- 1. Jets/lobes/hot spots
- diffusive acceleration
- energy Hillas-limited, $\mathcal{E}_{max} \sim Z$
- distant sources \rightarrow protons remain, pure GZK
- 2. AGN central black holes
- inductive acceleration, curvature-radiation losses
- injection hard, $\alpha \le 1.5$
- energy losses-limited, $\mathcal{E}_{max} \sim A^{1/4}/Z^{1/2}$
- numerous nearby sources can accelerate nuclei
 - ♦ interesting physics at 10²⁰ eV

(Auger, Yakutsk suggest heavy nuclei)

• GZK or \mathcal{E}_{max} or both?

AGN central black hole environment: both *B* and *R* governed by *M*_{BH}

AGN central black hole environment: \mathcal{E}_{max} governed by M_{BH}

Population of the sources:

$$\mathcal{E}_{\text{max}} = 5.5 \times 10^{19} \text{ eV} (A/Z^{1/4}) x^{3/8}$$

"realistic":
$$\mathcal{E}_{max} = 1.9 \times 10^{19} \text{ eV} (A/Z^{1/4}) x^{0.2975}$$

SMBH mass function:

$$\varphi = \varphi_0 x^{\alpha+1} \exp(1-x)$$

expected

"optimistic":

$$z_{\min} = 0.0012 x^{-0.23} \exp((x-1)/3)$$

$$\alpha = -0.32$$
, $\varphi_0 = 10^{-2.76}$ /Mpc³/dex, $x = M_{BH}$ /(10^{8.45} M_{\odot})

Population of the sources:

flux (proportional to the accretion rate) – use scaling

composition at injection – a la Allard et al. (derived from Galactic ISM abundances)

composition will be a problem! [p/Fe]=54000 allow for arbitrary metallicity to get some heavy nuclei

Implications for composition: can we get nuclei?

natural scenario:

- &_{max}(p)>10²⁰ eV
- realistic Fe abundances
- GZK cutoff seen
- light composition at Earth

Implications for composition: can we get nuclei?

weird scenario:

- *E*_{max}(p)<10²⁰ eV
- Fe abundances ×10000
- no GZK cutoff!
- heavy composition at Earth

Implications for composition: can we get nuclei?

how to get heavy composition AND GZK cutoff?

- occasionally close, relatively weak, high-metallicity source!
- Fe abundances ×1000
- $\mathcal{E}_{max}(Fe)$ ~10²⁰ eV for this particular source
- heavy composition at Earth governed by this source
- GZK cutoff governed by other sources + $\mathcal{E}_{\rm max}$ for this source

fine tuning, but Cen A...

North-South difference?

Conclusions:

- updated constraints on the UHECR accelerators
- active galaxies=plausible accelerators
- low-power Seyferts: heavy nuclei powerful BL Lacs and radio galaxies: protons
- acceleration in AGN: E_{max} is governed by the black-hole mass → demography known
- spectrum and composition may be predicted
- very difficult to have heavy nuclei + GZK
- a nearby source???