Study of the Cosmic Ray Composition with the Pierre Auger Observatory

Michael Unger for the Pierre Auger Collaboration (Karlsruher Institut für Technologie)

Outline

Detection of fluorescence light as a function of slant depth

event 1542115, CO

event 1542115, CO

event 1542115, CO

Average Shower Maximum, $\langle X_{max} \rangle$

primary protons:

 $\langle X_{\rm max} \rangle = D_{10} \, \log(E) + {\rm const}$

superposition model:

 $\langle X_{\rm max} \rangle = D_{10} \log(E/A) + {\rm const}$

elongation rate theorem:

 $\textit{D}_{10} \leq \textit{X}_0 \ln(10)$

Shower-to-Shower Fluctuations, $RMS(X_{max})$

primary protons

 $RMS(X_{max})^2 = \lambda_p^2 + V(Shower)$

superposition model...

 $RMS(A) = RMS(p)/\sqrt{A}$

...does not work here (fragmentation), but qualitatively

 $\operatorname{RMS}(A_1) < \operatorname{RMS}(A_2)$

for $A_1 > A_2$

Mixed composition

Data Selection

atmosphere&calibration

- good camera calibration constants
- require measured aerosol profile
- reject 'dusty' periods (VAOD@3 km <0.1)</p>
- cloud fraction < 25%</p>

fiducial volume cuts

- tank distance and zenith angle
- field of view (see next slides)
- minimum viewing angle > 20°

quality selection

- hybrid geometry reconstruction
- X_{max} observed
- ► expected σ(X_{max}) < 40 g/cm²
- reduced χ^2 of profile fit < 2.5

FD Field Of View (illustration)

limited FD field of view potentially biases measured X_{max} distribution

X_{max} Resolution

Systematic Uncertainties

 $\langle X_{\rm max} \rangle$:

 $RMS(X_{max})$:

number of events after selection:

• $\langle X_{\rm max} \rangle$ and RMS vs *E*

- resolution correction
- broken line fit: slopes D [g/cm²/decade]
- comparison to air shower simulations
- published HiRes data (update cf. Pierre's talk)

• $\langle X_{\rm max} \rangle$ and RMS vs *E*

- resolution correction
- broken line fit: slopes D [g/cm²/decade]
- comparison to air shower simulations
- published HiRes data (update cf. Pierre's talk)

- $\langle X_{\rm max} \rangle$ and RMS vs *E*
- resolution correction
- broken line fit: slopes D [g/cm²/decade]
- comparison to air shower simulations
- published HiRes data (update cf. Pierre's talk)

- $\langle X_{\rm max} \rangle$ and RMS vs *E*
- resolution correction
- broken line fit: slopes D [g/cm²/decade]
- comparison to air shower simulations
- published HiRes data (update cf. Pierre's talk)

- $\langle X_{\rm max} \rangle$ and RMS vs *E*
- resolution correction
- broken line fit: slopes D [g/cm²/decade]
- comparison to air shower simulations
- published HiRes data (update cf. Pierre's talk)

at high energies?

lg(E/eV)

Cross Checks - inclined vs. near vertical

inclinded: large $h(X_{max})$, upper FOV, small aerosol attenuation **vertical:** small $h(X_{max})$, lower FOV, larger aerosol attenuation

Signal Rise Time $(t_{1/2})$

CORSIKA+GEANT4 of tank signal at 1000 m ($\theta = 38^{\circ}$)

Signal Rise Time $(t_{1/2})$

CORSIKA+GEANT4 of tank signal at 1000 m ($\theta = 38^{\circ}$)

Signal Rise Time $(t_{1/2})$

CORSIKA+GEANT4 of tank signal at 1000 m ($\theta = 38^{\circ}$)

Deviation to Average Rise Time: $\langle \Delta \rangle$

$$\langle \Delta \rangle = \sum \frac{t_{1/2}^i - \langle t_{1/2}(E^*, r, \theta) \rangle}{\sigma_i}$$

('benchmark' $\langle t_{1/2} \rangle$ at reference energy E^{\star})

$\left< \Delta \right>$ Elongation Rate

Composition with SD - b) Rise Time Asymmetry

Composition with SD - b) Rise Time Asymmetry

Composition with SD - b) Rise Time Asymmetry

 $t_{1/2}$ vs. shower plane azimuth ξ (upstream: $-90^{\circ} < \xi < 90^{\circ}$)

asymmetry for proton \rightarrow iron

 $t_{1/2}/r = a + b\cos\xi$

→ 'asymmetry' <mark>b/a</mark>

Asymmetry Elongation Rate

'XAsymMax': sec θ position at which asymmetry b/a is maximal

'Calibration' of SD with FD (preliminary)

measurement of correlation of $\langle \Delta \rangle$ and XAsymMax with X_{max}

Summary of Auger Results (preliminary)

- elongation rate flattens at high energy
- fluctuations decrease with energy

FD paper expected to be submitted to PRL by mid-July