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Standard Scenario: Cold thermal relics
Non-Thermal Relics

The standard lore:

inflation suggests Ω = 1
BBN constrains baryon content, Ωbh2 = 0.019±0.001
Large-scale structure requires that DM is

dissipation-less
“cold”, i.e. non-relativistic already for À zdec
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

The standard lore:

inflation suggests Ω = 1
BBN constrains baryon content, Ωbh2 = 0.019±0.001
LSS requires that DM is dissipation-less and “cold”
thermal production of CDM,

ΩXh2∼
3×10−27cm3/s

〈σv〉

suggests weakly interacting DM particle with mass m∼ mZ
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Status of neutralino DM (2004):
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Status of neutralino DM (2004):
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Indirect detection claims: [Elsässer, Mannheim ’04 ]

Signal from
χχ annihilations in the diffuse extragalactic photon background:
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Indirect detection claims: [Elsässer, Mannheim ’04 ]

Signal from χχ annihilations in the diffuse extragalactic
photon background:
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Indirect detection claims: [Elsässer, Mannheim ’04 ]

Signal from χχ annihilations in the diffuse extragalactic
photon background:
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problems:
assumes γ absorption, not developement of el.-mag. cascade
needs large enhancement ∼ 106 (clumpiness)
should lead to strong Galactic signal
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Indirect detection claims: [de Boer et al. ’03, ’04 ]

Signal from χχ annihilations in the Galactic photon flux:
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Indirect detection claims: [de Boer et al. ’03, ’04 ]

Signal from χχ annihilations in the Galactic photon flux:
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problems:
assumes perfect modelling of astrophysical backgrounds
if global CR parameters are allowed to deviate from local ones,
good fit without DM
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Non-thermal DM: Axions

Strong CP problem:

L =−
αs

8π
(θ− arg det Mq)︸ ︷︷ ︸

θ̄<10−9

GG̃
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Non-thermal DM: Axions

Strong CP problem:

L =−
αs

8π
(θ− arg det Mq)︸ ︷︷ ︸

θ̄<10−9

GG̃

interpretate θ̄ as field θ̄→ a/fa, introduce potential such that
a→ 0
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Non-thermal DM: Axions

Strong CP problem:

L =−
αs

8π
(θ− arg det Mq)︸ ︷︷ ︸

θ̄<10−9

GG̃

interpretate θ̄ as field θ̄→ a/fa, introduce potential such that
a→ 0

⇒ axions couple to gluons and mix with pions

L =−
αs

8π
a
fa

GG̃
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Non-thermal DM: Axions

Strong CP problem:

L =−
αs

8π
(θ− arg det Mq)︸ ︷︷ ︸

θ̄<10−9

GG̃

interpretate θ̄ as field θ̄→ a/fa, introduce potential such that
a→ 0

⇒ axions couple to gluons and mix with pions

L =−
αs

8π
a
fa

GG̃

axions are “like” pions, thus

ma = mπ
fπ
fa
∼ 0.6eV

107GeV
fa

i.e. light axions decouple
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Non-thermal DM: Axions

coupling to photons

L =−
1
4

gaγaFµνF̃µν , gaγ =
α

2πfa
Cγ
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Non-thermal DM: Axions

coupling to photons

L =−
1
4

gaγaFµνF̃µν , gaγ =
α

2πfa
Cγ

Primakoff effect:
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Cosmological Production of Axions

light axions, ma <∼ 1 eV, were never in thermal equilibrium,

possible CDM candidate

two production mechanisms:
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Axion
Superheavy DM

Cosmological Production of Axions

light axions, ma <∼ 1 eV, were never in thermal equilibrium,

possible CDM candidate

two production mechanisms:

misalignment mechanism: axion mass is switched on at the
QCD phase transition, T ≈ 200 MeV. If axion field wasn’t at
minimum, coherent oscillations will be excited,

Ωah2 ≈ 2×4±1(µeV/ma)
1.2θ2

i
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Axion
Superheavy DM

Cosmological Production of Axions

light axions, ma <∼ 1 eV, were never in thermal equilibrium,

possible CDM candidate

two production mechanisms:

misalignment mechanism: axion mass is switched on at the
QCD phase transition, T ≈ 200 MeV. If axion field wasn’t at
minimum, coherent oscillations will be excited,

Ωah2 ≈ 2×4±1(µeV/ma)
1.2θ2

i

axionic strings form during the PQ phase transition and emit
axions later on.
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Stellar evolution limits:

virial theorem:

〈Ekin〉=−
1
2
〈Egrav〉

⇒ star has negative specific heat
contraction ⇒ heating & heating ⇒ expansion
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〈Ekin〉=−
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〈Egrav〉

⇒ star has negative specific heat
contraction ⇒ heating & heating ⇒ expansion

self-regulated nuclear burning via interplay of thermal pressure
and gravitation

novel energy loss leaves stellar structure nearly unchanged,
but leads to heating and thus to increased consumption of
nuclear fuel
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Stellar evolution limits:

virial theorem:

〈Ekin〉=−
1
2
〈Egrav〉

⇒ star has negative specific heat
contraction ⇒ heating & heating ⇒ expansion

self-regulated nuclear burning via interplay of thermal pressure
and gravitation

novel energy loss leaves stellar structure nearly unchanged,
but leads to heating and thus to increased consumption of
nuclear fuel

reduction of stellar lifetime:

δτ
τ
∼

La

Lγ
<∼ 1

⇒ upper limit on gaγ, ma; lower limit on fa
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Summary of axion limits:
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Detection of Axions
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Detection of Axions
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

φ̈k +
[
k2 +m2

eff(τ)
]

φk = 0
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Axion
Superheavy DM

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

φ̈k +
[
k2 +m2

eff(τ)
]

φk = 0

If meff is time dependent, vacuum fluctuations will be
transformed into real particles.
⇒ expansion of Universe leads to particle production
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Gravitational creation of superheavy matter

Small fluctuations of field Φ obey

φ̈k +
[
k2 +m2

eff(τ)
]

φk = 0

If meff is time dependent, vacuum fluctuations will be
transformed into real particles.
⇒ expansion of Universe leads to particle production

In inflationary cosmology

ΩXh2 =

(
MX

1012GeV

)2 TRH

109GeV

independent of details of particle physics, for any MX <∼ HI
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Properties of superheavy matter:

was never in thermal equlibrium:

⇒ unitarity limit M <∼ 20 TeV does not apply
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Axion
Superheavy DM

Properties of superheavy matter:

was never in thermal equlibrium:

⇒ unitarity limit M <∼ 20 TeV does not apply

can be strongly interacting and dissipation-less:

small relative energy transfer dE/(Edt) per time requires:
either small σ or

small energy transfer y∼ m/mX

⇒ any DM particle with mX >∼ 10 TeV is dissipation-less
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Properties of superheavy matter:

was never in thermal equlibrium:

⇒ unitarity limit M <∼ 20 TeV does not apply

can be strongly interacting and dissipation-less:

small relative energy transfer dE/(Edt) per time requires:
either small σ or

small energy transfer y∼ m/mX

⇒ any DM particle with mX >∼ 10 TeV is dissipation-less

lifetime:

τ¿ T0 or

metastable or stable due to some (gauged) R symmetry
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Lifetime of superheavy matter:

for SHDM, even gravitational interactions d = 5 result in
cosmological short lifetimes, τX ¿ t0.

three possibilities:

(global) symmetry,
perhaps broken by wormhole effects, τX ∝ exp(S) or by
instanton effects, τX ∝ exp(4π2/g2)

discrete symmetries forbid operators with d < 9

crypton, i.e. fractionally charged and confined particle of
superstring theories
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Detection of superheavy matter:

direct detection: density 1/MX, recoil energy is constant
⇒ large σXN required
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Detection of superheavy matter:

indirect detection via neutrinos from the Sun:
signal should compete with usual fluxes
⇒ 〈σv〉 ∼ 10−26 cm2 needed
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Detection of superheavy matter:

UHECR above the GZK cutoff via nucleon, photon secondaries
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Summary

Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

Michael Kachelrieß Dark Matter: Candidates and their properties



Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Summary
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abundance, cold, dissipation-less

various candidates with these properties:
neutralino, gravitino, axion, axiono, SHDM, . . .
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Summary

Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

various candidates with these properties:
neutralino, gravitino, axion, axiono, SHDM, . . .

only a combination of accelerator, direct and indirect searches
can identify the DM particle
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Standard Scenario: Cold thermal relics
Non-Thermal Relics

Axion
Superheavy DM

Summary

Cosmology probes only generic properties of DM:
abundance, cold, dissipation-less

various candidates with these properties:
neutralino, gravitino, axion, axiono, SHDM, . . .

only a combination of accelerator, direct and indirect searches
can identify the DM particle

even in the best-case scenario (SUSY at LHC), confirmation
of LSP as DM by (in-) direct searches necessary
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