Dark Matter: Candidates and their properties

Michael Kachelrieß

Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut)

<回> < 三> < 三>

The standard lore:

• inflation suggests $\Omega = 1$

The standard lore:

- inflation suggests $\Omega = 1$
- BBN constrains baryon content, $\Omega_b h^2 = 0.019 \pm 0.001$

The standard lore:

- inflation suggests $\Omega = 1$
- BBN constrains baryon content, $\Omega_b h^2 = 0.019 \pm 0.001$
- Large-scale structure requires that DM is
 - dissipation-less
 - "cold", i.e. non-relativistic already for $\gg z_{\rm dec}$

The standard lore:

- inflation suggests $\Omega = 1$
- BBN constrains baryon content, $\Omega_b h^2 = 0.019 \pm 0.001$
- LSS requires that DM is dissipation-less and "cold"
- thermal production of CDM,

suggests weakly interacting DM particle with mass $m \sim m_Z$

Status of neutralino DM (2004):

Status of neutralino DM (2004):

Indirect detection claims:

Signal from

 $\chi\chi$ annihilations in the diffuse extragalactic photon background:

[Elsässer, Mannheim '04]

 Signal from χχ annihilations in the diffuse extragalactic photon background:

 Signal from χχ annihilations in the diffuse extragalactic photon background:

problems:

- assumes γ absorption, not developement of el.-mag. cascade
- needs large enhancement $\sim 10^6$ (clumpiness)
- should lead to strong Galactic signal

• Signal from $\chi\chi$ annihilations in the Galactic photon flux:

 \bullet Signal from $\chi\chi$ annihilations in the Galactic photon flux:

problems:

- assumes perfect modelling of astrophysical backgrounds
- if global CR parameters are allowed to deviate from local ones, good fit without DM

[de Boer et al. '03, '04]

Axion Superheavy DM

Non-thermal DM: Axions

• Strong CP problem:

$$\mathcal{L} = -\frac{\alpha_s}{8\pi} \underbrace{(\theta - \arg \det M_q)}_{\bar{\theta} < 10^{-9}} G\tilde{G}$$

イロン イボン イヨン イヨン 三連

Axion Superheavy DM

Non-thermal DM: Axions

• Strong CP problem:

$$\mathcal{L} = -\frac{\alpha_s}{8\pi} \underbrace{(\theta - \arg \det M_q)}_{\bar{\theta} < 10^{-9}} G\tilde{G}$$

• interpretate $\bar{\theta}$ as field $\bar{\theta} \rightarrow a/f_a$, introduce potential such that $a \rightarrow 0$

イロン イボン イヨン イヨン 三連

Non-thermal DM: Axions

• Strong CP problem:

$$\mathcal{L} = -\frac{\alpha_s}{8\pi} \underbrace{(\theta - \arg \det M_q)}_{\bar{\theta} < 10^{-9}} G\tilde{G}$$

- interpretate $\bar{\theta}$ as field $\bar{\theta} \to a/f_a,$ introduce potential such that $a \to 0$
- \Rightarrow axions couple to gluons and mix with pions

$$\mathcal{L} = -rac{lpha_s}{8\pi}rac{a}{f_a}G ilde{G}$$

・ロン ・同と ・ヨン ・ヨン

-1

Non-thermal DM: Axions

• Strong CP problem:

$$\mathcal{L} = -\frac{\alpha_s}{8\pi} \underbrace{(\theta - \arg \det M_q)}_{\bar{\theta} < 10^{-9}} G\tilde{G}$$

- interpretate $\bar{\theta}$ as field $\bar{\theta} \to a/f_a,$ introduce potential such that $a \to 0$
- \Rightarrow axions couple to gluons and mix with pions

$$\mathcal{L} = -\frac{\alpha_s}{8\pi} \frac{a}{f_a} G \tilde{G}$$

axions are "like" pions, thus

$$m_a = m_\pi \frac{f_\pi}{f_a} \sim 0.6 \text{eV} \, \frac{10^7 \text{GeV}}{f_a}$$

i.e. light axions decouple

Axion Superheavy DM

Non-thermal DM: Axions

coupling to photons

$$\mathcal{L} = -\frac{1}{4}g_{a\gamma}aF_{\mu\nu}\widetilde{F}^{\mu\nu}, \qquad g_{a\gamma} = \frac{lpha}{2\pi f_a}C_{\gamma},$$

イロン イボン イヨン イヨン

Axion Superheavy DM

Non-thermal DM: Axions

coupling to photons

$$\mathcal{L} = -\frac{1}{4}g_{a\gamma}aF_{\mu\nu}\widetilde{F}^{\mu\nu}, \qquad g_{a\gamma} = \frac{lpha}{2\pi f_a}C_{\gamma},$$

• Primakoff effect:

・ロン ・同と ・ヨン ・ヨン

Cosmological Production of Axions

- light axions, $m_a \lesssim 1$ eV, were never in thermal equilibrium,
- possible CDM candidate

two production mechanisms:

・ロン ・同と ・ヨン ・ヨン

-1

Cosmological Production of Axions

- light axions, $m_a \lesssim 1$ eV, were never in thermal equilibrium,
- possible CDM candidate

two production mechanisms:

• misalignment mechanism: axion mass is switched on at the QCD phase transition, $T \approx 200$ MeV. If axion field wasn't at minimum, coherent oscillations will be excited,

$$\Omega_a h^2 \approx 2 \times 4^{\pm 1} (\mu eV/m_a)^{1.2} \theta_i^2$$

Cosmological Production of Axions

- light axions, $m_a \lesssim 1$ eV, were never in thermal equilibrium,
- possible CDM candidate

two production mechanisms:

• misalignment mechanism: axion mass is switched on at the QCD phase transition, $T \approx 200$ MeV. If axion field wasn't at minimum, coherent oscillations will be excited,

$$\Omega_a h^2 \approx 2 \times 4^{\pm 1} (\mu eV/m_a)^{1.2} \theta_i^2$$

• axionic strings form during the PQ phase transition and emit axions later on.

Stellar evolution limits:

• virial theorem:

$$\langle E_{kin}
angle = -\frac{1}{2} \langle E_{grav}
angle$$

 \Rightarrow star has negative specific heat contraction \Rightarrow heating & heating \Rightarrow expansion

(日) (同) (目) (日) (日) (日)

Stellar evolution limits:

• virial theorem:

$$\langle E_{kin}
angle = -\frac{1}{2} \langle E_{grav}
angle$$

 \Rightarrow star has negative specific heat contraction \Rightarrow heating & heating \Rightarrow expansion

• self-regulated nuclear burning via interplay of thermal pressure and gravitation

・ロン ・同と ・ヨン ・ヨン

-1

Stellar evolution limits:

• virial theorem:

$$\langle E_{kin} \rangle = -\frac{1}{2} \langle E_{grav} \rangle$$

 \Rightarrow star has negative specific heat contraction \Rightarrow heating & heating \Rightarrow expansion

- self-regulated nuclear burning via interplay of thermal pressure and gravitation
- novel energy loss leaves stellar structure nearly unchanged, but leads to heating and thus to increased consumption of nuclear fuel

(D) (A) (A) (A)

Stellar evolution limits:

• virial theorem:

$$\langle E_{kin}
angle = -\frac{1}{2} \langle E_{grav}
angle$$

 \Rightarrow star has negative specific heat contraction \Rightarrow heating & heating \Rightarrow expansion

- self-regulated nuclear burning via interplay of thermal pressure and gravitation
- novel energy loss leaves stellar structure nearly unchanged, but leads to heating and thus to increased consumption of nuclear fuel
- reduction of stellar lifetime:

$$rac{\delta au}{ au} \sim rac{L_a}{L_\gamma} \lesssim 1$$

 \Rightarrow upper limit on $g_{a\gamma}$, m_a ; lower limit on f_a

・ 御 と ・ 国 と ・ 国 と

Axion Superheavy DM

Summary of axion limits:

Experimental Dark-Matter Search Range

Axion Superheavy DM

Detection of Axions

Michael Kachelrieß Dark Matter: Candidates and their properties

Axion Superheavy DM

Detection of Axions

Axion Superheavy DM

Gravitational creation of superheavy matter

• Small fluctuations of field Φ obey

$$\ddot{\boldsymbol{\phi}}_k + \left[k^2 + m_{\text{eff}}^2(\boldsymbol{\tau})\right] \boldsymbol{\phi}_k = 0$$

イロン イボン イヨン イヨン

-1

Gravitational creation of superheavy matter

• Small fluctuations of field Φ obey

$$\ddot{\boldsymbol{\varphi}}_k + \left[k^2 + m_{\text{eff}}^2(\boldsymbol{\tau})\right] \boldsymbol{\varphi}_k = 0$$

• If *m*_{eff} is time dependent, vacuum fluctuations will be transformed into real particles.

 \Rightarrow expansion of Universe leads to particle production

(ロ) (同) (E) (E)

Gravitational creation of superheavy matter

• Small fluctuations of field Φ obey

$$\ddot{\boldsymbol{\varphi}}_k + \left[k^2 + m_{\text{eff}}^2(\boldsymbol{\tau})\right] \boldsymbol{\varphi}_k = 0$$

 If m_{eff} is time dependent, vacuum fluctuations will be transformed into real particles.
 ⇒ expansion of Universe leads to particle production

In inflationary cosmology

$$\Omega_X h^2 = \left(\frac{M_X}{10^{12} \text{GeV}}\right)^2 \frac{T_{RH}}{10^9 \text{GeV}}$$

independent of details of particle physics, for any $M_X \lesssim H_I$

Axion Superheavy DM

Properties of superheavy matter:

was never in thermal equilbrium:

 \Rightarrow unitarity limit $M \leq 20$ TeV does not apply

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

-1

Properties of superheavy matter:

was never in thermal equlibrium:

 \Rightarrow unitarity limit $M \lesssim 20$ TeV does not apply

can be strongly interacting and dissipation-less:

- small relative energy transfer dE/(Edt) per time requires:
 - either small σ or
 - small energy transfer $y \sim m/m_X$
 - \Rightarrow any DM particle with $m_X \gtrsim 10$ TeV is dissipation-less

・ロン ・同と ・ヨン ・ヨン

Properties of superheavy matter:

was never in thermal equlibrium:

 \Rightarrow unitarity limit $M \lesssim 20$ TeV does not apply

can be strongly interacting and dissipation-less:

small relative energy transfer dE/(Edt) per time requires:

- either small σ or
- small energy transfer $y \sim m/m_X$
- \Rightarrow any DM particle with $m_X \gtrsim 10$ TeV is dissipation-less

lifetime:

- $au \ll T_0$ or
- metastable or stable due to some (gauged) R symmetry

Lifetime of superheavy matter:

• for SHDM, even gravitational interactions d = 5 result in cosmological short lifetimes, $\tau_X \ll t_0$.

three possibilities:

- (global) symmetry, perhaps broken by wormhole effects, τ_X ∝ exp(S) or by instanton effects, τ_X ∝ exp(4π²/g²)
- discrete symmetries forbid operators with d < 9
- crypton, i.e. fractionally charged and confined particle of superstring theories

Axion Superheavy DM

Detection of superheavy matter:

• direct detection: density $1/M_X$, recoil energy is constant \Rightarrow large σ_{XN} required

・ロ・ ・ 日・ ・ 日・ ・ 日・

Axion Superheavy DM

Detection of superheavy matter:

• indirect detection via neutrinos from the Sun: signal should compete with usual fluxes $\Rightarrow \langle \sigma \nu \rangle \sim 10^{-26} \text{ cm}^2 \text{ needed}$

Axion Superheavy DM

Detection of superheavy matter:

• UHECR above the GZK cutoff via nucleon, photon secondaries

• Cosmology probes only generic properties of DM: abundance, cold, dissipation-less

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Cosmology probes only generic properties of DM: abundance, cold, dissipation-less
- various candidates with these properties: neutralino, gravitino, axion, axiono, SHDM, ...

- Cosmology probes only generic properties of DM: abundance, cold, dissipation-less
- various candidates with these properties: neutralino, gravitino, axion, axiono, SHDM, ...
- only a combination of accelerator, direct and indirect searches can identify the DM particle

・ロト ・ 同ト ・ ヨト ・ ヨト

- Cosmology probes only generic properties of DM: abundance, cold, dissipation-less
- various candidates with these properties: neutralino, gravitino, axion, axiono, SHDM, ...
- only a combination of accelerator, direct and indirect searches can identify the DM particle
- even in the best-case scenario (SUSY at LHC), confirmation of LSP as DM by (in-) direct searches necessary