The Escape Model

Michael Kachelrieß

NTNU, Trondheim

with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

< □ > < @ >

Outline of the talk

Introduction

- Results on Composition
- Escape model
 - Fluxes of groups of CR nuclei & knee
 - Transition to extragalactic CRs
 - Exgal. protons, γ 's and ν 's as CR secondaries
- A recent nearby SN?
 - Anisotropy
 - Antimatter fluxes
- Conclusions

Outline of the talk

- Introduction
 - Results on Composition
- Escape model
 - Fluxes of groups of CR nuclei & knee
 - Transition to extragalactic CRs
 - Exgal. protons, γ 's and ν 's as CR secondaries
- A recent nearby SN?
 - Anisotropy
 - Antimatter fluxes
- Conclusions

Outline of the talk

- Introduction
 - Results on Composition
- Escape model
 - Fluxes of groups of CR nuclei & knee
 - Transition to extragalactic CRs
 - Exgal. protons, γ 's and ν 's as CR secondaries
- A recent nearby SN?
 - Anisotropy
 - Antimatter fluxes
- Conclusions

Composition of Galactic CRs: traditional view

[Gaisser, Stanev, Tilav '13]

Composition of Galactic CRs: KASCADE-Grande 2013

Auger

Composition of Galactic CRs:

[arXiv:1409.5083]

Michael Kachelrieß (NTNU Trondheim)

Escape Mode

DESY Zeuthen, 04.03.16 3 / 30

Auger

Composition of Galactic CRs:

composition $6 \times 10^{17} - 5 \times 10^{18} \,\mathrm{eV}$ consistent with

50% p, 50% He+N, < 20%Fe

Composition of Galactic CRs:

- 50% p, 50% He+N, < 20%Fe
- early transition from Galactic to extragalactic CRs

Transition to extragalactic CRs - anisotropy limits

dominant light Galactic composition around $E = 10^{18} \,\mathrm{eV}$ excluded

[Giacinti, MK, Semikoz, Sigl '12, PAO '13]

Knee explanations

Cosmic Ray Knee: steepening $\Delta \gamma \simeq 0.4$ at few $\times 10^{15}$ eV

change of interactions at multi-TeV energies: excluded by LHC

.

- change of interactions at multi-TeV energies: excluded by LHC
- change of propagation at $R_L \simeq l_{\rm coh}$ or $E_c \propto ZeB \, l_{\rm coh}$: \Rightarrow change in diffusion from $D(E) \sim E^{1/3}$ to
 - Hall diffusion $D(E) \sim E$
 - small-angle scattering $D(E) \sim E^2$
 - something intermediate?

unavoidable effect, but for $B \sim {\rm few} \ \mu {\rm G}$ and $l_{\rm coh} \sim 30 \ {\rm pc}$ at too high energy:

$$E_c/Z \sim 10^{15} \ \frac{B}{\mu G} \ \frac{l_c}{pc}$$

• maximal rigidity of dominant CR sources - e.g. Hillas model

explanations

Cosmic Ray Knee: 3 explanations

maximal rigidity of dominant CR sources – e.g. Hillas model

• i = 1, ..., 3 types of CR sources, with slopes $\alpha_{A,i}$, rel. fractions $f_{A,i}$

• maximal rigidity of dominant CR sources - e.g. Hillas model

• i = 1, ..., 3 types of CR sources, with slopes $\alpha_{A,i}$, rel. fractions $f_{A,i}$ • no reliable estimate of $E_{\max,i}$, $\alpha_{A,i}$, and $f_{A,i}$

 \Rightarrow fit of many-parameter model to two observables: $I_{
m tot}$ and $\ln(A)$

Knee expla

explanations

Cosmic Ray Knee: 3 explanations

• maximal energy: Gaisser, Stanev & Tilav version

3

<ロ> (日) (日) (日) (日) (日)

[1303.3665]

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$

3

< ロ > < 同 > < 回 > < 回 > < 回 >

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim (10-150) \, {\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

3

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim (10-150) \, {\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations $\boldsymbol{B}(\boldsymbol{k})$ with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

$$\begin{array}{lll} \mbox{Kolmogorov} & \alpha = 5/3 & \Leftrightarrow & \beta = 1/3 \\ \mbox{Kraichnan} & \alpha = 3/2 & \Leftrightarrow & \beta = 1/2 \end{array}$$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\delta}$
 - observed: $dN/dE \propto E^{-\delta-\beta}$
 - δ and β are degenerated

イロト イポト イヨト イヨト 二日

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

$$\begin{array}{lll} \mbox{Kolmogorov} & \alpha = 5/3 & \Leftrightarrow & \beta = 1/3 \\ \mbox{Kraichnan} & \alpha = 3/2 & \Leftrightarrow & \beta = 1/2 \end{array}$$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\delta}$
 - observed: $dN/dE \propto E^{-\delta-\beta}$
 - δ and β are degenerated
- anisotropy $\delta = -3D_{ij}\nabla_i \ln(n)$

イロト イポト イヨト イヨト 二日

Our approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.

3

A B A A B A

< 一型

Our approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.
- as preparation, let's calculate diffusion tensor in pure, isotropic turbulent magnetic field

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \,\mathrm{eV}$

Knee ex

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \,\mathrm{eV}$

• asymptotic value is ~ 10 smaller than extrapolated "Galprop value"

[Giacinti, MK, Semikoz ('12)]

Knee from Cosmic Ray Escape

- $l_{\rm coh}$ and regular field $oldsymbol{B}(oldsymbol{x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc

• determine magnitude of random $\boldsymbol{B}_{\mathrm{rms}}(\boldsymbol{x})$ from grammage X(E)

3

< 回 > < 回 > < 回 >

Knee exp

explanations

Knee from Cosmic Ray Escape

- ullet $l_{\rm coh}$ and regular field ${m B}({m x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc

• determine magnitude of random $oldsymbol{B}_{
m rms}(oldsymbol{x})$ from grammage X(E)

explanations

Knee from Cosmic Ray Escape

- $\bullet~l_{\rm coh}$ and regular field ${m B}({m x})$ fixed from observations
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc

• determine magnitude of random $oldsymbol{B}_{
m rms}(oldsymbol{x})$ from grammage X(E)

- \Rightarrow prefers weak random fields
- \Rightarrow fluxes $I_A(E)$ of all isotopes fixed by low-energy data

Knee

explanations

Galactic CRs: KASCADE-Grande 2013

Michael Kachelrieß (NTNU Trondheim)

Escape Mode

DESY Zeuthen, 04.03.16 14 / 30

explanations

Knee from Cosmic Ray Escape: proton energy spectra

Knee from Cosmic Ray Escape: He energy spectra

Michael Kachelrieß (NTNU Trondheim)

Knee from Cosmic Ray Escape: CNO energy spectra

Michael Kachelrieß (NTNU Trondheim)

DESY Zeuthen, 04.03.16 15 / 30

Knee from Cosmic Ray Escape: total energy spectra

Knee

Knee from Cosmic Ray Escape: $\ln(A)$

Knee

Knee from Cosmic Ray Escape: $\ln(A)$

exgal. mix: 60% p, 25% He, 15% N

Knee from Cosmic Ray Escape: dipole anisotropy

Knee from Cosmic Ray Escape: dipole anisotropy

- what are the sources?
- testable via γ -ray and neutrinos?

Normal and starburst galaxies:

- assume $E^{-2.2}$ source spectrum
- starburst: $B \sim 100 B_{MW} \Rightarrow$ rescale grammage and E_{max}
- fix Q_{CR} via SN/star formation rate
- vary gas density

- 31

A B F A B F

Normal and starburst galaxies:

Normal and starburst galaxies:

- can not explain exgal. protons
- sources are thick ⇒ can not be dominant sources of both EGRB and neutrinos

Michael Kachelrieß (NTNU Trondheim)

• $\alpha_p = 2.2$ requires "late" redshift evolution:

• $\alpha_p = 2.2$ requires "late" redshift evolution:

 \Rightarrow BL Lacs/FR-I are promising sources

- $\alpha_p = 2.2$ requires "late" redshift evolution:
- $\Rightarrow\,$ BL Lacs/FR-I are promising sources

Diffuse fluxes from BL Lacs $\alpha = 2.17$ and $E_{\tau} = 3 \times 10^{11} \text{ eV}$

Diffuse fluxes from BL Lacs $\alpha = 2.1$ and $E_{\tau} = 3 \times 10^{11} \text{ eV}$

Diffuse fluxes from BL Lacs $\alpha = 2.1$ and $E_{\tau} = 3 \times 10^{14} \text{ eV}$

Diffuse fluxes from BL Lacs

- BL Lac's can explain CR proton flux
- EGRB and large fraction of IceCube ν from pp interactions

Anisotropy of a single source

• if only turbulent field:

diffusion = random walk = free quantum particle

• number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source: only turbulent field

Anisotropy of a single source: plus regular

Anisotropy of a single source:

• regular field changes n(x), but keeps it Gaussian

 \Rightarrow no change in δ

Anisotropy of a single source:

Single source: other signatures

• 2 Myr SN explains anomalous 60 Fe sediments

[Ellis+ '96]

3

A B < A B </p>

Single source: other signatures

- ullet 2 Myr SN explains anomalous 60 Fe sediments
- secondaries:
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age $\Rightarrow \bar{p}$ flux is predicted
 - ▶ e⁺ flux is predicted
 - relative ratio of \bar{p} and e^+ depends only on their Z factors

- 3

< 回 > < 回 > < 回 >

[Ellis+ '96]

Single source: other signatures

- 2 Myr SN explains anomalous 60 Fe sediments
- secondaries:
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age $\Rightarrow \bar{p}$ flux is predicted
 - \blacktriangleright e^+ flux is predicted
 - \blacktriangleright relative ratio of \bar{p} and e^+ depends only on their Z factors
- may responsible for different slopes of local p and nuclei fluxes

< 回 > < 回 > < 回 >

[Ellis+ '96]

Single source: proton flux

< 回 > < 三 > < 三 >

Single source: positrons

[MK, Neronov, Semikoz '15]

< 一型

Single source: antiprotons

[[]MK, Neronov, Semikoz '15]

- Knee due to CR escape
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - \blacktriangleright transition to light-medium extragalactic CRs completed at $10^{18}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{\rm rms}$ and small $l_{\rm coh}$
 - transition to light-medium extragalactic CRs completed at $10^{18} \,\mathrm{eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - transition to light-medium extragalactic CRs completed at $10^{18} \,\mathrm{eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

- Knee due to CR escape
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $B_{
 m rms}$ and small $l_{
 m coh}$
 - \blacktriangleright transition to light-medium extragalactic CRs completed at $10^{18}\,{\rm eV}$
 - propagation feature is unavoidable, only possible to shift to higher energies
 - source effects may be on top, but seem not necessary

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- plateau of δ points to dominance of single source
- Single source: antimatter
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - $\blacktriangleright\,$ consistent with $^{60}{\rm Fe}$ and $\delta\,$
- Iocal geometry of GMF is important

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- \blacktriangleright plateau of δ points to dominance of single source

Single source: antimatter

- consistent explanation of p, \bar{p} and e^+ fluxes
- consistent with 60 Fe and δ
- Iocal geometry of GMF is important

- Single source: anisotropy
 - dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - \blacktriangleright plateau of δ points to dominance of single source
- Single source: antimatter
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - $\blacktriangleright\,$ consistent with $^{60}{\rm Fe}$ and $\delta\,$
- Iocal geometry of GMF is important