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Version 2: Corrections to typos in Problem 4 and Problem 6. They were probably obvious.

Problem 1

(a) sphere

First, we show that any parallelepiped inscribed in a sphere must be a right parallelepiped.
We use a sphere of unit radius without lack of generality. We first choose ~r = (x, y, z), the
position of one of the vertices. It must hold that

x2 + y2 + z2 = 1 (1)

Now, let the vectors ~A, ~B, and ~C define the directions to the nearest three vertices from ~R,
placing those vertices at ~R+ ~A, ~R+ ~B, and ~R+ ~C. Then we also have the equations

(x+ xA)2 + (y + yA)2 + (z + zA)2 = 1 (2)

(x+ xB)2 + (y + yB)2 + (z + zB)2 = 1 (3)

(x+ xC)2 + (y + yC)2 + (z + zC)2 = 1 (4)

Since the sphere defines a full 2-dimensional surface, there is an infinite number of possible
choices of ~A, ~B, and ~C that stay on the sphere. But now the remainder of the vertices are
fully determined: they are at ~R + ~A+ ~B, ~R + ~A+ ~C, ~R + ~B + ~C, and ~R + ~A+ ~B + ~C. We
thus have four more equations that must be satisfied:

(x+ xA + xB)2 + (y + yA + yB)2 + (z + zA + zB)2 = 1 (5)

(x+ xA + xC)2 + (y + yA + yC)2 + (z + zA + zC)2 = 1 (6)

(x+ xB + xC)2 + (y + yB + yC)2 + (z + zB + zC)2 = 1 (7)

(x+ xA + xB + xC)2 + (y + yA + yB + yC)2 + (z + zA + zB + zC)2 = 1 (8)

Now, if one subtracts from the ~R+ ~A+ ~B equation the ~R+ ~A and the ~R+ ~B equations and
adds the ~R equation, and does similarly for the ~R + ~A + ~C and ~R + ~B + ~C equations, one
obtains

2xA xB + 2 yA yB + 2 zA zB = 0 (9)
2xA xC + 2 yA yC + 2 zA zC = 0 (10)
2xB xC + 2 yB yC + 2 zB zC = 0 (11)
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These are just dot-product equations, indicating that ~A, ~B, and ~C must be mutually perpen-
dicular. Hence, the parallelepiped must be a right parallelepiped.

Given the above, let us find the optimal side length for the parallelepiped. Since a sphere
is rotationally symmetric, and the choice of the first vertex (x, y, z) is arbitrary, we may
without loss of generality assume that the faces of the right parallelepiped are parallel to the
coordinate axes. Then the volume of the parallelepiped is 8xyz. Therefore we are to solve
the following constrained optimization problem:

maximize 8xyz

subject to x2 + y2 + z2 = 1

At a maximum point, the function

F (x, y, z, λ) = 8xyz + λ
(
x2 + y2 + z2 − 1

)
(12)

must have vanishing partial derivatives with respect to x, y, z, and to the Lagrange multiplier
λ. This yields

∂F

∂x
= 8yz + λ(2x) = 0 (13)

∂F

∂y
= 8xz + λ(2y) = 0 (14)

∂F

∂z
= 8xy + λ(2z) = 0 (15)

x×Eq. (13)-y×Eq. (14) gives us
λ
(
2x2 − 2y2

)
= 0

Similarly we have

λ
(
2x2 − 2z2

)
= 0

λ
(
2y2 − 2z2

)
= 0

We find either λ = 0 or
x2 = y2 = z2 (16)

Obviously λ 6= 0 as otherwise at least two of x, y, z would have to be zero. Substituting Eq.
(16) back into the equation of the ellipsoid, we obtain

x =
1√
3

y =
1√
3

z =
1√
3

So the dimensions of the parallelepiped are
(

2√
3
, 2√

3
, 2√

3

)
and the volume is 8

3
√

3
. This result

can of course be scaled to an arbitary radius sphere.

(b) ellipsoid

An ellipsoid of semimajor axes a, b, c can be mapped to a sphere by

x→ x′ = x/a y → y′ = y/b z → z′ = z/c (17)
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The mapping is one-to-one. The Jacobian matrix of the mapping is 1/(abc), so all volumes
are scaled by a factor 1/(abc) in this mapping. It can also be seen that parellelepipeds remain
parallelepipeds. A parallelepiped is defined by one vertex ~r = (x, y, z) and three vectors ~A,
~B, ~C describing the vectors from ~r to the nearest three vertices; the remaining four vertices
are built up from sums of ~r and combinations of ~A, ~B, and ~C. If we scale the components
of ~r, ~A, ~B, and ~C by a, b, and c as in the above transformation, then all the vertices of
an inscribed parallelepiped on the ellipsoid will map onto the sphere, and the same defining
characteristics of the parallelepiped will remain with the transformed vectors ~r′, ~A′, ~B′, and
~C ′.

Because a) the mapping is one-to-one; b) all volumes are scaled by a common factor set only
by the shape of the ellipsoid; and c) parallelepipeds remain parallelpipeds, we may therefore
transform our sphere result that the solution is a cube back to the ellipsoid. Put another
way, if we take our cube and transform it back, all other possible parallelepipeds that can
be inscribed in the ellipsoid must have volume less than or equal to the transformed cube,
because the parallelepipeds they map to in the sphere case must be of equal or lesser volume
than the cube. Now, they may map to rotated cubes, which is fine – whatever they are, they
can have volume no larger than the solution we have already found.

So, the result for the ellipsoidal case is the vertices satisfy

|x| = a√
3

|y| = b√
3

|z| = c√
3

(18)

the side lengths are
(

2a√
3
, 2b√

3
, 2c√

3

)
and the volume is 8abc

3
√

3
.

Problem 2

(a) Let c and b subscripts denote the car and the pendulum bob. The spatial position vectors of
the box and the pendulum bob are

−→r c = Xx̂ (19)
−→r b = (X + l sin θ) x̂− l cos θŷ (20)

The velocity of the bob in the lab frame is

−→v b =
.−→r b =

( .
X + l cos θ

.
θ
)
x̂+D sin θ

.
θŷ (21)

=
(
v0 + at+ l cos θ

.
θ
)
x̂+D sin θ

.
θŷ

where we use
.
X = v0 + at. The kinetic energy is

T =
1
2
mb
−→v b · −→v b

=
1
2
mb

[( .
X +D cos θ

.
θ
)2

+D2 sin2 θ
.
θ
2
]

=
1
2
mb

[(
v0 + at+D cos θ

.
θ
)2

+D2 sin2 θ
.
θ
2
]

=
1
2
mb

[
(v0 + at)2 + 2 (v0 + at)D cos θ

.
θ +D2

.
θ
2
]
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(b) The potential is
V = −mbgD cos θ (22)

The Lagrangian is

L = T − V

=
1
2
mb

[
(v0 + at)2 + 2 (v0 + at)D cos θ

.
θ +D2

.
θ
2
]

+mbgD cos θ

which depends explicitly on the time.

(c) The Euler-Lagrange equation is

∂L

∂θ
− d

dt

∂L

∂
.
θ

= 0 (23)

−mb (v0 + at)D sin θ
.
θ −mbgD sin θ − d

dt

(
mb

[
(v0 + at)D cos θ +D2

.
θ
])

= 0

−gD sin θ − aD cos θ −D2
..
θ = 0

..
θ +

g

D
sin θ +

a

D
cos θ = 0

(d) When the pendulum remains at rest in the equilibrium,
..
θ = 0 which implies

g

D
sin θeq +

a

D
cos θeq = 0

tan θeq = −a
g

To check that the equilibrium is stable or not, we need to expand the EOM around θ = θeq.
We first note that

cos (θeq + η) = cos θeq − η sin θeq +O(η2)

sin (θeq + η) = sin θeq + η cos θeq +O(η2)

So around θeq, EOM becomes up to O(η2)

..
η +

g

D
(sin θeq + η cos θeq) +

a

D
(cos θeq − η sin θeq) = 0 (24)

..
η +

g cos θeq
D

η

(
1− a

g
tan θeq

)
= 0 (25)

..
η +

g cos θeq
D

(
1 +

a2

g2

)
η = 0 (26)

Since g cos θeq

D

(
1 + a2

g2

)
> 0, θ = θeq is a stable equilibrium.

(e)

cos θeq =
1√

1 + tan2 θeq

=
g√

g2 + a2
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So from Eq. (26), we find

ω2 =
g cos θeq
D

(
1 +

a2

g2

)
=

g2

D
√
g2 + a2

(
1 +

a2

g2

)
=

√
g2 + a2

D

Problem 3

(a) We start with the Lagrangian

L =
i~
2

(
ψ∗
∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ~2

2m

(
∂ψ

∂x

)(
∂ψ∗

∂x

)
− V ψ∗ψ (27)

We treat ψ and ψ∗ as two independent variables and the corresponding Euler-Lagrange equa-
tions are

ψ∗ :
∂

∂t

(
∂L
∂ ∂ψ

∗

∂t

)
+

∂

∂x

(
∂L
∂ ∂ψ

∗

∂x

)
− ∂L
∂ψ∗

= 0 (28)

− i~
2
∂ψ

∂t
− ~2

2m
∂

∂x

(
∂ψ

∂x

)
+ V ψ − i~

2
∂ψ

∂t
= 0 (29)

− ~2

2m

(
∂2ψ

∂x2

)
+ V ψ = i~

dψ

dt
(30)

ψ :
∂

∂t

(
∂L
∂ ∂ψ∂t

)
+

∂

∂x

(
∂L
∂ ∂ψ∂t

)
− ∂L
∂ψ

= 0 (31)

i~
2
∂ψ∗

∂t
− ~2

2m
∂

∂x

(
∂ψ∗

∂x

)
+ V ψ∗ +

i~
2
∂ψ∗

∂t
= 0 (32)

− ~2

2m

(
∂2ψ∗

∂x2

)
+ V ψ∗ = −i~dψ

∗

dt
(33)
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(b)

L
(
ψ′, ψ′∗,

∂ψ′

∂t
,
∂ψ′∗

∂t
,
∂ψ′

∂x
,
∂ψ′∗

∂x
, x, t

)
(34)

= − i~
2

(
ψ′∗

∂ψ′

∂t
− ψ′

∂ψ′∗

∂t

)
− ~2

2m

(
∂ψ′

∂x

)(
∂ψ′∗

∂x

)
− V ψ′∗ψ′

= − i~
2

((
ψeiφ

)∗ ∂ (ψeiφ)
∂t

−
(
ψeiφ

) ∂ (ψeiφ)∗
∂t

)

− ~2

2m

(
∂
(
ψeiφ

)
∂x

)(
∂
(
ψeiφ

)∗
∂x

)
− V

(
ψeiφ

)∗ (
ψeiφ

)
= − i~

2

(
ψ∗e−iφ

eiφ∂ψ

∂t
− ψeiφ

e−iφ∂ψ∗

∂t

)
− ~2

2m

(
∂ψ

∂x

)
eiφe−iφ

(
∂ψ∗

∂x

)
− V ψ∗e−iφeiφψ

= − i~
2

(
ψ∗
∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ~2

2m

(
∂ψ

∂x

)(
∂ψ∗

∂x

)
− V ψ∗ψ

= L
(
ψ,ψ∗,

∂ψ

∂t
,
∂ψ∗

∂t
,
∂ψ

∂x
,
∂ψ∗

∂x
, x, t

)
From Eq. (34), we note L

(
ψ′, ψ′∗, ∂ψ

′

∂t ,
∂ψ′∗

∂t ,
∂ψ′

∂x ,
∂ψ′∗

∂x , x, t
)

is independent of φ so

d

dφ
L
(
ψ′, ψ′∗,

∂ψ′

∂t
,
∂ψ′∗

∂t
,
∂ψ′

∂x
,
∂ψ′∗

∂x
, x, t

)
= 0

∂L
∂ψ′

∂ψ′

∂φ
+

∂L
∂ψ∗′

∂ψ∗′

∂φ
+

∂L
∂ ∂ψ

′

∂t

∂ ∂ψ
′

∂t

∂φ
+

∂L
∂ ∂ψ∗

′

∂t

∂ ∂ψ
∗′

∂t

∂φ
+

∂L
∂ ∂ψ

′

∂x

∂ ∂ψ
′

∂x

∂φ
+

∂L
∂ ∂ψ∗

′

∂x

∂ ∂ψ
∗′

∂x

∂φ
= 0
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If we apply the Euler-Lagrange equation, we find

0 =
∂

∂t

(
∂L
∂ ∂ψ

′

∂t

)
∂ψ′

∂φ
+
∂

∂t

(
∂L
∂ ∂ψ∗

′

∂t

)
∂ψ∗′

∂φ
+

∂

∂x

(
∂L
∂ ∂ψ

′

∂x

)
∂ψ′

∂φ
+

∂

∂x

(
∂L
∂ ∂ψ∗

′

∂x

)
∂ψ∗′

∂φ

+
∂L
∂ ∂ψ

′

∂t

∂ ∂ψ
′

∂φ

∂t
+

∂L
∂ ∂ψ∗

′

∂t

∂ ∂ψ
∗′

∂φ

∂t
+

∂L
∂ ∂ψ

′

∂x

∂ ∂ψ
′

∂φ

∂x
+

∂L
∂ ∂ψ∗

′

∂x

∂ ∂ψ
∗′

∂φ

∂x

0 =
∂

∂t

(
∂L
∂ ∂ψ

′

∂t

∂ψ′

∂φ

)
+
∂

∂t

(
∂L
∂ ∂ψ∗

′

∂t

∂ψ∗′

∂φ

)
+

∂

∂x

(
∂L
∂ ∂ψ

′

∂x

∂ψ′

∂φ

)
+

∂

∂x

(
∂L
∂ ∂ψ∗

′

∂x

∂ψ∗′

∂φ

)

0 =
∂

∂t

(
∂L
∂ ∂ψ∂t

∂ψ′

∂φ
|φ=0

)
+
∂

∂t

(
∂L
∂ ∂ψ∗∂t

∂ψ∗′

∂φ
|φ=0

)

+
∂

∂x

(
∂L
∂ ∂ψ∂x

∂ψ′

∂φ
|φ=0

)
+

∂

∂x

(
∂L
∂ ∂ψ∗∂x

∂ψ∗′

∂φ
|φ=0

)

0 =
∂

∂t

(
∂L
∂ ∂ψ∂t

ψ − ∂L
∂ ∂ψ∗∂t

ψ∗

)
+

∂

∂x

(
∂L
∂ ∂ψ∂x

ψ − ∂L
∂ ∂ψ

∗

∂x

ψ∗

)

0 = i~
∂

∂t
(ψψ∗)− ~2

2m
∂

∂x

(
∂ψ∗

∂x
ψ − ∂ψ

∂x
ψ∗
)

0 =
∂

∂t
(ψψ∗) +

i~
2m

∂

∂x

(
∂ψ∗

∂x
ψ − ∂ψ

∂x
ψ∗
)
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(f)

Regarding finding the radial constraint force – the key would be to introduce a radial coordinate ρ
for the center of mass of the rolling hoop and to write down a constraint equation ρ− (a− b) = 0.
One would have to let ρ be a completely undetermined variable, with the appropriate kinetic energy
term, until its value is set by the Lagrange multiplier equation. For a problem in this style, see
Problem 6.
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