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1. Introduction: The 1905 debate

Hundred years ago the German journal “Annalen tgsiR”, the same 1905 volume where Albert
Einstein published his first five ground breakingjcdes, provided a forum for a debate betweenethre
physicists, Denizot, Rudzki and Tésa the correct interpretation of the Coriolis effeén particular
how it manifested itself in the Foucault penduluwperiment. The debate was complicated by many
side issues, but the main problem was this: ifpliedulum’s plane of swing was fixed relative to the
stars, as it was often said, why then was notatgd of rotation the same, one sidereal day (28%0
and 56 minutes), everywhere on earth and not drtlyeapoles?

Instead the period was 28 hours in Helsinki, 30rbdau Paris and 48 hours in Casablanca, i.e. the
sidereal day divided by the sine of latitude. A¢ #guator the period was infinite; there was no
deflection. This could only mean that the planswing indeed was turning relative the stars. But
how could then, as it was also said, a ‘fictitioungrtial force be responsible for the turning?

Hundred years later, Einstein’s five 1905 “Annatlem Physik” papers are common ground in the
elementary physics education whereas teacherstagielgs, just like Denizot, Rudzki and Tigsa
struggle to come to terms with the Coriolis effddtis article will try to explain the complex and
contradictory understanding of the deflective m&d$ra in rotating systems. But first it might be
appropriate to remind us what is generally agreed o



In the 18 century the problems of finding the longitudinakijtion at sea was of prime
importance. One method demanded very accurateki@ging. In 1847 the French
mathematician Poisson stated that the movemensiofijgle pendulum would not be affected b
the rotation of the earth. Only four years latesther French scientist Foucault could show thd
this was indeed the case. Although the deflectioonie swing was minute, successive swings
would accumulate and make the swing change sulstamtver time. Since the period Foucaul
measured was 30 hours he more or less that it waufzroportional to the inverse of the sine g
latitude. This was actually in conflict with his ayhysical explanation according to which the
plane of swing would remain fixed versus the fixrstwhile the earth was rotating under it. Th
fact that it turns versus the starts indicates éhatal force is doing work, and this real forcéhis
component of gravitation perpendicular to the rotal axis. Only at the poles is this compone
zero, and there, but only there, does the plarssvofg preserve its orientation relative to the
stars. Foucault's experiment was hailed as thenitefpoof that Galileo had been right and the
Church wrong about the rotation of earth. Howefkiad the experiment been conducted in the
Tropics where the period exceeds three days, tkddithe earth rotation would have been les
obvious and the propagandistic value highly reduced
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2. The Coriolis effect — the basics

A mass particle (m) that sationaryin a rotating systenf)) at a distanc® from the centre of
rotation, appears to an observer taking part irrdketion, to be affected by a fictitious forCe=
m(Qx(QxR), the so called centrifugal force. If the partidenot stationary but move¥| relative to

the rotating system it appears to be affected bgdalitional fictitious forcd= = -2mQxV, , the so
called Coriolis force.

The cross produck] indicates thaF is perpendicular not only to the rotational axi$ &lso to the
relative motion. A moving body is therefore driven into a circupeth, “inertia circle”, with radius
R=V,/2Q and a period of=17Q. In contrast to “normal” inertia, which resistsagciyes in a body’s
motion, the Coriolis inertial force resists dis@awents by trying to return the motion to the origin
The clearest example in nature of the Coriolisatfig inertia oscillations in the oceans (fig.1).
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Fig.1: A drifting buoy set in motion by strong wesdy winds in the Baltic Sea in July 1969. The uppest water layers of

the oceans tend to, when the wind has decreaseatdp\ve under inertia and follow approximately ifedircles. This is

reflected in the motions of drifting buoys. In ttese there are steady ocean currents the tragstoili become cycloides
(Courtesy Barry Broman, SMHI)
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Any mathematical derivation or intuitive explanaigoof the Coriolis force, which is in conflict with
the notion of the inertia circle motion, is thenefanisleading, incomplete or wrong.

The cross product formulation also tells us that@woriolis force takes its largest value when the
motion is perpendicular to the rotational axis, &adishes for all motions parallel to it. Only nawts,
or components of motions, perpendiculaf2are deflected (fig.2). Vertical motions at thegsoare
not deflected, but at the equator fully deflect®d.the other hand horizontal motion at the poles ar

fully deflected, but on the equator only if they @&m the east-west direction. They are then dedtect
vertically (see the E6tvos effect below).

1 Also for this reason, and not only because theeftgdnertial, the Coriolis force does not do anykwvan the body, i.e. it

does not change its speed (kinetic energy), om\ditection of its motion. The statement that tleidis force “does not do
any work” should not be misunderstood that it “ddedo anything”.
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Fig.2: The cross-product formulation means thatrations which are perpendicular to the earth’s axe deflected, those
parallel to it are not.

A motion parallel to datitude (u) is always perpendicular to the rotational afs is totally deflected
(2Qu) since its direction is straight out from thesathe component along the earth’s surface at
latituded is 2Qusind. A motion along dongitude(v) has one component, vagsvhich is parallel to
the axis of rotation and is not affected. The ottenponent (vsid) is completely deflected which
yields X2vsing. This explains why the Coriolis force on a rotgtplanet varies with the sine of
latituded, F=-2nQsindV, , the “sine law”. So for example, at latitude 4@Pcentral Italy) where
2Qsing is approximately equal to T8, a motion of 10 m/s would move in an inertia @rof 100

km radius completing an orbit in almost 14 hours.

But the Coriolis effect is only one part of a thobmensional deflective mechani&rive can
summarise the three-dimensional Coriolis defletifun different motions in a an array where the
mathematical terms have, for simplicity, been iatkd only by their signs:

Northward Eastward Downward
motion motion motion
Northward 0 -1 0
deflection
Eastward 1 0 1
deflection
Downward 0 -1 0
deflection

Table 1: The three-dimensional relation betweenntieéion on a rotating planet and the Coriolis deftec The numbef
means no deflectiori, means deflection in the indicated direction afidhe opposite direction. (For example tHein the
upper row represents both eastward motions deflesmuthward, and westward motion deflected nortdwyafmhe
deflections, which involve vertical motions are poctional to thecosineof the latitude, while those, which do not involve
the vertical motions are proportionaldime of the latitudes.

2 The three-dimensional Coriolis terms or, as Lordvitetalled themgyroscopic termsplay an important role in general
laws concerning the stability of all rotating systdor examplet is the three-dimensional Coriolis effect, whicloyides a
“gyroscopic resistance” to children’s spinning taps



The three-dimensional deflection mechanism wasgsed and discussed at separate historical
epochs: the horizontal deflection of vertical matin the 17 early 19 century, the vertical
deflection of horizontal motion in the late™8entury and horizontal deflection of horizontaltion
was discussed from the early™@&ntury until now.

3. The horizontal deflection of vertical motion: Hav Newton almost discovered the
Coriolis effect

In the 1600’s the possible deflection of fallingexis was one of the prominent scientific problelns.
was considered as a way, perhaps the ultimate avpsoive or disprove the Copernican theory that
Earth rotates and not the stars. The anti-Coperaickimed that, if the earth was spinning aroasd i
axis, an object dropped from a tower would be ‘tefhind”, i.e. deflected to the west. Galileo adjue
that this was wrong since the object would take ipathe earth’s rotation. But, he added, since the
rotational velocity at the top of the tower woulel dlightly larger than at the surface, the fallixject
would actually overtake the tower and land slightlyheeastof it (fig.3)
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Fig.3: A tower at the Equator of height h rotatimigh the earth (with radius R and angular velo€fyhas a velocity of2R

at the base and(R+h) at the top. An object falling from the toptbé tower with an acceleration g will have a hanizd

velocity excess of2h, which, over the time of the falrih will carry the object a horizontal distan§: Q iha Away
g 2\9

from the Equator the deflection is proportionattte cosine of the latitude.

If we put Galileo’s reasoning into mathematics,wik find that an object dropped from 100 m will,

as seen from outside the earth, follow a paralpaltb and be deflected 3 cm. Such small values were
at that time difficult to confirm by measurememstually, the deflection according to Galileo’s
method is not quite correct and yields results cilzsire 50% too large.

We can understand this in two ways, one by tredtiegleflection as a consequence of the Coriolis
effect. The velocity w=gt of a falling body can &@it up into one component wsiparallel to the
Earth’s axis, another component, wepperpendicular to the Earth’s axis. The first wiidit be
deflected since it is parallel to the rotation afie second deflected to the right (east), by @oli®
force -dwcosp (per unit mass). Integrating this over the timéhaf fall from a height h yields a

deflection g _ Qcosp [8h® .
3 g
Another way is to start from Galileo’s approacht toutake into account that during the fall gravity

will not point in the same direction. Due to thegh of the earth it will change with a component
pointing increasingly back towards the startingnpgiig. 4).



Fig.4: The trajectory of a falling object, seennfroutside the earth. Due to the curvature of tithehe object will be
affected by a component of gravity g pointing tosigathe centre of the earth. This slightly backwdirdcted acceleration

can be writtena = —gsinQt = gQt , which, integrated over t, the time of the falklgls _g\/@ which added to
g

6
Q [8h” yields the correct deflectiof (8h° .
2\ g 3\g

The "backward” acceleration reduces the 3 cm diéfiedy 1 cm to 2 cm, just as given by the
Coriolis effect. But more interesting, retardingtmeastward motion, the object will, seen from
outside the Earth, follow an elliptic path. Thesfito realize this was two famous British scidstfis
Robert Hooke and Isaac Newton.

In November 1679 Robert Hooke, in his capacityasln elected Secretary of the Royal Society,
tried to draw Isaac Newton into a discussion omtiséions of the planets and comets. But Newton
had just returned from a long vacation at his farhdme in Lincolnshire - where he incidentally
might have watched apples fall in the garden. Rerlvaspired by these falling apples he had
something else on his mind, "a fancy of my owng fiorizontal deflection of objects dropped from a
high altitude as proof of the Earth's rotation.

The exchange of letters that followed during thetei 1679-80 between Newton and Hooke shows
that it was thanks to Hooke, they came to realiaethat the fall of the body must be treated as an
elliptic orbit with the centre of the Earth in one of usif (fig. 5).
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Fig.5: a) Newton’s first intuitive idea was thaettrajectory of a falling object would spiral towlarthe centre of the earth,
b) just considering conservation of absolute véjoasiould result in a parabolic path (dashed lind)ile the true trajectory
would be an ellips (full line)

From the insight that a falling object in absolgpace follows the same type of orbit as any of the
planets or comets around the Sun, it was posgiblEdéwton to infer that the motions of all terréestr
and extra-terrestrial bodies might be controlledh®/same mechanisnmiversal gravitationHe
never discovered the Coriolis effect, but lookingif found the laws of motion.
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Fig.6: More than a century after Newton, in 1808eaperiment was conducted in Schlebusch, Gernlamgnty-nine iron
pebbles were dropped into a 90 metre deep minedtadtaverage deflection was estimated to 8.5 nmipaoed to the
theoretically expected value 8.8 mm.

4. The vertical deflection of horizontal motion: The E6tvOs effect

In the early 1900:s a German team from the InstitfitGeodesy in Potsdam carried out gravity
measurements on moving ships in the Atlantic, Im@iad Pacific Oceans. While studying their

results the Hungarian nobleman and physicist LoRwmidnd E6tvos (1848-1919) noticed that the
readings were lower when the boat moved eastwhiglser when it moved westward (fig.7). He
identified this as primarily a consequence of ttation of the earth. In 1908 new measurements were
made in the Black Sea on two ships, one movingr@adtand one westward. The results
substantiated E6tvos' claim. Since then geodassstshe correction formula

2 2

+V

a, =2Qucosp + !

where u is the eastward velocity, v the northward R the radius of the earth. The first term is the
vertical Coriolis effect the second term reflects the upward centrifuffateof moving over any,
even non-rotatig spherical surface.
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Fig. 7: Fig. 1.3.1: Example of the E0tv0s effectasiwred by a French research vessel Samudra irothle S
Indian Ocean. The ship is first moving slowly in asterly direction (16), then faster westward (17 &nally
slowly eastward (18). The unit on the y-axis measgravity per unit mass (mGal measures accelaratid is
1:1000" of 1 cm/$) and is proportional to the ship’s weight (Couyteléne Hébert, 1999).

% The reason why only east-west motion contributebedirst term is for the same reasons as laicabove: v has two
components, one pointing parallel®oand not deflected, the other perpendiculdR tand fully deflected. But since the
deflection is parallel to the earth’s surface itrat change g.



To understand why the weight of a body on the garttependent of its motion we must understand
why the earth is not a perfect sphere.

Q

I centrifugal force
90°

Fig.8: On a slightly flattened rotating planet travitational force is not directed perpendiculdadyhe earth’s surface, but
with an angle slightly pointing towards the pol€se component pointing towards the axis balancesthward directed
centrifugal force, or in other words, the sum af\gtational attraction and the centrifugal forcea\dty, is perpendicular to
the earth’s surface.

The earth is quite a fast-rotating planet. ltsuadif about 6370 km and rotational speed at thatequ
of 465 m/s yields a centrifugal acceleration of 80 m’s?. As first recognised by Newton, during
the course of the earth’s early evolution, whamas a spinning deformable ball, the centrifugatéor
moved a substantial amount of mass from highesvi@f latitudes to form a slightly flattened ball
(or, to be more precise, an oblate ellipsoid) wittadius 21 km greater at the equator than at the
poles. The combined effect of the gravitationatég* and the centrifugal force, we get the forte o
gravity or effective gravity, g, which determinessmuch a body weighs. Any stationary body on
the earth’s surface remains stationary becauseteegravity points perpendicularly to the surface
However, this is only valid as long as the bodsgtationary. For a moving body the gravitational
attraction g* remains the same but the centrifiigede changes in magnitude and/or direction. The
gravity will change and with it the weight of thedy —the E6tvis effect

Q2

T “The Eotvos effect”

o Changed centrifiioal force

gy
A" “Coriolis’ force”

Fig. 9: Any motion of a body on the earth’s surfaffects the centrifugal force in direction andimaignitude. The balance
with the gravitational attraction is broken and timbalance manifest itself as vertical and horiabatcelerations, the
E6tvos and Coriolis effects respectively.



But not only the vertical component of effectivengty is changing. The other component parallel to
the earth’s surface also changes - and this i€thimlis force

5. The horizontal deflection of horizontal motion:the Coriolis effect

At the start of the Industrial Revolution a radiaad patriotic movement developed in France to
promote technical development by educating worlereftsmen and engineers in ‘mechanique
rationelle’. Gaspard Gustave Coriolis (1792-1843)ell-respected teacher at I'Ecole Polytechnique
in Paris, published in 1829 a textbook which présg¢mechanics in a way that could be used by
industry. Here we find for the first time the carrexpression for kinetic energy, A®. Two years
later he established the relation between poteatidlkinetic energy in a rotating system.

- : Gaspard Gustave Coriolis was born on 21
May 1792 in Paris to a small aristocratic familgttivas impoverished
by the French Revolution. The young Gaspard e&tyed remarkable
mathematical talents. At sixteen he was admittetied=cole
Polytechnique where he later became a teacher.ddeegarded as a
very good teacher and teaching inspired his wohle @ducation of
mechanics at the time was dominated by statics;iwivas suited only
for problems related to constructional work, natrwachines driven by
water or wind. Coriolis was among the first to poiena reform in the
education and 1829 he published a textbook in mréckauited for the
construction industry. Here for the first time Wiceenergy is defined as
mV?/2. During the following years Coriolis became retsted in rotating
systems, first the relation between kinetic angptial energy in such a
system, later (in 1835) the centrifugal effect dvody that is moving
within a rotating system. In 1836 he was elect¢d ine Academie de
Science and in 1838 he became deputy directoed®dfytechnique. In
1843 his health deteriorated and he died whilesiegihis 1829 book.

In 1835 came the paper that would make his namedaniSur les equations du mouvement relatif
des systemes de corps”, where the ‘deflective faxglicitly appears. The problem Coriolis set out
to solve was related to the design of certain tyfesachines with separate parts, moving relative t
the rotation. Coriolis showed that the total ir@rforce is the sum of two inertial forces, the coom



centrifugal forceQ”R and the “compound centrifugal forceQ¥, , was later became known as the
“Coriolis force™.

Coriolis’ way to explain the Coriolis effect can Qealitatively understood from the simple
2

reformulation of the common centrifugal force infe = where V is the absolute velocity and

R
R the radius of curvature of the trajectory of in@ss element m. A relatitangentialmotion V; will
increase or decrease the absolute velocity V agreblly the centrifugal force depending on jfig/
directed with or against the rotation. A relatraglial motion, when Vr is directed inward or outward
from the centre of rotation, will yield a trajecyowhich is an inward or outward directed
(Archimedian) spiral. Since the centrifugal forsealways perpendicular to the absolute motion, it
will no longer be directed radially, inward or oatnl from the centre of rotation, but with some
angle. Again, the difference between this centafdgrce and the common centrifugal force
constitutes the Coriolis force.

The total The total
inertial force inertial
=the common force The common

centrifugal
force

centrifugal force The Coriolis

Fig. 10: a) An object fixed to a rotating platfofallows a curved trajectory and is affected by @atoertial
force, which we call the common centrifugal forbeThe body can move along the same trajectory, die to
a combination of the rotation and the motion retathe platform. The total inertial force is the satmut is now
the sum of the common centrifugal force and thel@isrforce”.

Coriolis was not interested in “his” force as mashwe are. He only valued it the part of the total
inertial force, which is not explained by the commuentrifugal force.

4 To consider the Coriolis force as an extension éocéntrifugal force is in agreement with the staddsuation ma= ma
—2mxV, - mQx(Qx R) where the last two terms represent the totatiaddorce.

10



6. The Coriolis effect on a rotating planet

Coriolis reasoning can easily be applied to motioms rotating planet. The main direction of the
centrifugal force due to the earth’s rotation isggedicular to the earth’s axis and will remain so
although its magnitude might vary depending onntioéion of an object on the earth’s surface. The
vertical component of this variation, affecting theight of the object, is the E6tvios effect. Buarth
is also a horizontal component, which is nothiregdhan the Coriolis effect.

Coriolis

centrifugal
foree

Comimon
centrifugal

Coriolis e

force

Fig.11: A further clarification of fig.10: inwarchd outward relative motions appear for an outsiaeover as absolute
motions with trajectories spiralling inwards regpegly outwards. The corresponding centrifugal éoig different to the
common centrifugal force (for a statuionary objeat}l this difference is the “force” Coriolis discosé in 1835.

Note that mathematically neither the E6tvds norGbeolis forces contain an expression for the
earth’s radius or eccentricity. On a rotating bertfect spherical earth there would still be a A@io
force, but no Coriolis effect since it would be qaetely overshadowed by the general centrifugal
effect of accelerating all movable objects towdtd#sequator. The importance of the (non-spherical)
shape of the earth lies in the cancelling (or batanout) of the common centrifugal force by the
radial component of gravitation. This leaves ther&’ centrifugal component to express the
“Coriolis effect”.

It has turned out, quite surprisingly, that bytfae simplest way to qualitatively, intuitively,
understand the Coriolis effect on the earth isoies@ler our planet as it actually is, a rotatintath
ellipsoid where the dominating forces are grawtatind the common centrifugal force.

It has not been possible to find out to what de@regolis’ 1835 paper influenced the technology of
the period. However, a direct application of higkvemerged in the 1960’s when American and
Russian engineers planned for future space staffdrey should be made as gigantic wheels, slowly
rotating to provide a centrifugal force that wosktve as an artificial gravity and give a comfoeab
life on board. An example of this can be seen 1869 Stanley Kubric science fiction film"2001 -
A Space Odyssey". However, at about the time ofefease of the film the engineers soon realised
that their space stations would not be very corafie places because of the Coriolis effect.
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A space wheel with a radius of 100 meter would reeeatation period of 20 seconds to generate a
centrifugal force of the same magnitude terresgniality. But in this rotating environment the Gxis
forces would be almost 4000 times stronger thatherearth! Machinery with moving or rotating parts,
like centrifuges and washing machines might breakrd The crew would suffer from physiologically d
psychologically uncomfortable Coriolis effects whbry made any movement. Modern space
technology is therefore trying to solve the probigartificial gravity along other lines.

7. The flat and parabolic turntable

A common way to illustrate the Coriolis deflectimnto throw or roll a ball over a turntable rotatin
anticlockwise. From outside the ball is seen to enova straight line; seen from the anticlockwise
rotating turntable, the ball appears to be defttethe right (fig. 11).

066"

Fig. 11: A ball rolling straight seen from outsi@g will for an observer in the rotating system egupto be deflected (b), but
will not follow an inertia circle, but an ever-widieg expanding spiral.

However, most of what we see here is not the Qerfokce, but the centrifugal force. If only the
Coriolis force had been present the ball wouldrretafter having performed a circular orbit (“inarti
circle”) instead of disappearing out of sight in erer-widening spiral. This explains why one does
not simply experience the Coriolis force by walkamyoss a merry-go-round.
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However, we can cancel out the centrifugal forceléfprming the turntable into a slightly concave
parabola. A parabolid is a surface normal to &seitant of the centrifugal and gravity forces. It
means that a small marble remains at rest at aimy @o the surface. For a certain rotation a
stationary object at a distance from the centm@tation the components of the centrifugal foree] a
gravity parallel to the surface, balance each offgr12).

Centrifugal Q

Q Jorce

Centrifugal
Jorce

Py, 4 Gravity

90°

Gravitational
Jorce

Fig. 12: For a stationary object on a rotating ptga) or a rotating parabolic surface (b) the zwrial
components of the centrifugal force is balancethieyhorizontal component of the gravitational foof¢he
planet and, on the turntable, the horizontal corepbof the weight of the body. In both cases thamanent of
gravitation and gravity, perpendicular to the rnotadl axis, equals the centrifugal force.

If the object is set in relative motion by some utgive force this balance will be disturbed and the
object perform inertia oscillations, with twice taegular velocity of the pan (fig. 13).

Fig.13: Absolute and relative motion of a ball iparabolic shaped turntable rotating anti-clockwageA ball,
stationary in the rotating system, appears fromsidatto be moving in an anticlockwise circle (firie); b) the
ball has been given an impetus and is from ouisigigpears to be moving anticlockwise in an eligiibit, in

the rotating system moving in a clockwise inertrale. The vertical movement of the ball is negéetsince it
introduces a slow anticlockwise precession of thgse.

But there is still a paradoxical discovery to bedma/Ne have all the time assumed that there is no
friction between the moving object and the rotasogiace of the planet. But, in a frictionless
environment, how does the moving object “feel” thtion of the underlying surface? How does the
object “know” that it is moving within a rotatingstem?
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On a flat merry-go-round, making one revolutior2iseconds and 3 m from the centre of
rotation, a body moving with a speed of 1 m/s, @eiperience a centrifugal acceleration that jis
about five times stronger than the Coriolis ac@len. Only at a distance of 0.6 m from the
centre of rotation are the two accelerations obégtrength. To cancel the centrifugal effect the
merry-go-round must have a slightly concave, pdralsarface.

Such a parabolic dish was in use by professor No#n@hillips in his meteorological

lecturers at the Massachusetts Institute of Tedgyoin the 1950’s. A largish flat pan (similar
to a pie pan) was filled with a slightly liquid cent mixture and run overnight and was set up
to rotate on a turntable driven by a small conssaeted motor (with a period of about 2
seconds). After a night’s rotation the cement haedeinto a parabolic surface. The surface was
then smoothed, with war-soluble valve grinding compound and a small slightlunded disc

Anybody who actually begins using the concave abig, will realise a paradox. If there is no
frictional coupling between the puck and the unded parabolic dish there is no exchange of
momentum, it would not matter whether or not theapalic dish was rotating or not. We can perform
two identical experiments: one with the turntabid aamera rotating together with the ball at rest o
the dish or the turntable is at rest wiitle ball movingwith a tangential velocity at a constant distance
from the centre of rotation. The camera will stiltate together with the ball. From the point awi

of the camera the results will be identical.

The “role” of the turntable is therefore not to yide a rotational impetus on the ball, but to defin
parabolic shape that will act as a constraint. §drae applies to the earth. If it suddenly stopped
rotating, the atmosphere would for some short towinue due to inertia. An observer on a
previously geostationary, but now orbiting, satellwould see the Coriolis effect still in actiordan
weather systems develop. The reason is that theatating earth would not attain a spheroidal
shape.

8. Coriolis effects in outer space — the stable Leange’s points

The fact that a body affected by the Coriolis dffémes not have to be in direct contact with atioga
foundation/base leads us to one of the most spdatamanifestations of the Coriolis effect in outer
space, the so-called stable Lagrange points demagtiematically in 1772 by the French
mathematician J. L. Lagrange (1736-1813). A Lagegmgjnt is a position in space where the
gravitational fields of two celestial bodidd, andm, of substantial but differing mass, combine to
form a point at which a third body of negligible $savould be stationary relative to the two bodies
(fig. 14a).

Commoeon point of
gravity of M and m

Small object

Fig.14a: The stable Lagrange points L4 and L5 afmed through a balance of two gravitational aticans and the
centrifugal force, positioned at the angles of egaidistant triangles (where the angles are 60°).
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As for any orbiting planet around a star, the eartl the sun create five such “Lagrange points’™o Tw
of them, L1 and L2 close to the earth, L3 in therearbit but on the opposite side of the sun, latd
and L5 in the earth’s orbit but forming an equididttriangle with the earth and the sun.

Lagrange did not envisage that his discovery chalkk any practical importance, but in our times L1
and L2 have become favoured positions for spat®ista An unseen planet X at Lagrange point L3
was a popular theme in early science fiction ssofiem where the UFOs and other unexplained
phenomenas were supposed to emanate. Howeverl i land L3 points are unstable on a time
scale of approximately 23 days. This requires B&®lto nudge them back into place from time to
time and any planet X would soon drift away fromhidden position behind the sun.

The Lagrange points L4 and L5, however, providblethalance as long as the mass ration between
the two objects is larger than 25 (actually 24.86}he authoritative literature on celestial meaths,
(see for example p. 66-67 and 74-97 in Murray, Cail S.F. Demott, 1999: Solar System
Dynamics, Cambridge University Press, 592 pp.)areetold that the mechanism is nothing else than
the Coriolis forceThe mechanism is similar to the one on earth: artz&l between gravitation and

the centrifugal force, in this cas®go gravitational forces.

However, this Coriolis effect differs from the owe are used to on earth since it is driving moving
objects not into inertia circles, butertia ellipsesThe Coriolis effect will draw any celestial body
back if it tries to “escape”. This is indeed whastappened with a large number of asteroids, which
are trapped in two of Jupiter's Lagrange pointg)(E4Db).

Fig.14b: A schematic view of the inner planets,dbteroid belt and Jupiter. The clusters of asderahead and behind
Jupiter (called the “Greek” and the “Trojans” resipeely) are trapped around two stable Lagrangatsdihey form
together with the Sun and Jupiter equidistant ¢lies It is the Coriolis force that keeps theseragte in their quasi-
stationary positions, very much in the same watha<Coriolis force on earth strives to keep any impwbject within a
small area.
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9. Taylor columns

Geoffrey Ingram Taylor (1886-1975) was one of theag physicists of the twentieth century, among
the last masters of both theory and experimenttilided his career as a meteorologist and in 1913
took part in a six-month expedition to the wateifS\ewfoundland to report on icebergs in the wake
of the Titanic disaster. Taylor had a passion ifadihg agreement between theoretical results and
observations, to see how to make the experimeatalitons correspond with those assumed in
theory. Much of the teaching in hydrodynamics at time concerned problems which were
mathematically solvable, but not necessarily relatereality. One of those hydrodynamical theorems
stated:

In a steady, rapidly rotating flow with angular @eity Q, the dominant forces are the pressurg
gradientlp, and centrifugal forces, and the equation of nmteduce t@pQxV=-[p wherep

is the fluid densityy the velocity and p the pressure. Taking the cietbg Qx[0V=0 which
means that there are no velocity variations albegdirection of the axis of rotation, which alsp
means that it is difficult to stretch rapidly roteg bodies.

A1

In other words, for a fluid in uniform rotation,gtmotion within the fluid does not vary vertically
(parallel to the rotation axis). This seemed toldaio defy common sense. To test this for himbkelf
designed a series of experiments with a rotatiaggtank filled with water.

Taylor set the tank into rotation. The centrifufpate would move water from the inner towards the
outer parts of the tank creating a balance betwseoutward-pointing centrifugal force and the
inward-pointing pressure gradient force. The sw@faicthe water would then have a slightly parabolic
concave shape and the whole tank-water systenenaitti the same angular velocity.

Taylor inserted a drop of ink into the rotating sratvithout stirring it. But, instead of dispersiagd
colouring the water, it remained for a long timeimertical column, later known as a “Taylor
column”, moving around in the tank as a rigid bdfiy.15b). What happened was that when the ink
started to spread out in horizontal directionsguek particle was immediately affected by the
Coriolis force acting at right angles to the motitirforced the particles into curved motions, in
circles of surprisingly small radii. If Taylor'sril rotated with one revolution in two seconfs={=
3.14 rad 8), and the ink spread out at 0.5 ¢y this would yield inertia circles with a diametsr

less than 1 mm.

Fig.15: Ink poured down in a non-rotating tankefillwith water will disperse in a normal way (a)eT®ame when the tank
is rotating leads to the formation of vertical aohs of ink, “Taylor columns”(b)
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So contrary to all physical intuition, by rotatiagluid we make it change its physical
properties, make it “stiff”. Taylor's experimentménd us of the fundamental fact that the
Coriolis force is not just deflecting’ moving bodjébut opposes their displacement by trying
to restore them to their initial position (fig.16).

'#'J -

o ‘ s, R

Fig.16: The Coriolis force tends to restore a bddyits initial position which hinders the geogragaii
displacement of air masses, “The woollen cap effect”

The vorticies and jet streams are the consequerides opposing forces, one (the pressure gradient
force) trying to equalise large-scale density casts, the other (the Coriolis force) trying to oest
them.

10. The Coriolisacceleration — a simple shortcut?

In 1879, the German meteorologist Adofpprung suggested a different mathematical way abwlith

the Coriolis effectabandon the notion of relative motion and derive dleceleration in a fixed
systemIn other words: find the accelerationpieventa relative motion from being deflected! This
acceleration, +2xV,, achieved by someal forceis, by some strange convention, called the
Coriolis acceleration The derivation is simple and Newton could haveeadib by the same Euclidean
method he used to find the centripetal acceleratidRrincipia” (fig.17).
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Fig. 17: a) Newton’s derivation of the centripedateleration: a body is over tim by the rotatioQQ carried from Ato B
and would, by pure inertia, in the next time inarrave continued to C, had it not been affected bgntripetal impetus
which brought it to D. By simple geometry one g8B=RQ*(At)?. In case b) the body is also moving radially witative
velocity V=AR/At and would have continued from B to C, had it nreeibaffected by a centripetal impetus which broitght
to D. Since ACF is proportional to ABE and AF=2AE{dllows that CF=2BE2QRAt and since DE 2Q(R-AR)At it

follows that GD=GF-DECF-DF=XARAt=2QV(At)? . It can easily be shown that D'EFG is a paraijeimn with GF
perpendicular to OB, so GD BO and the Coriolis acceleration is perpendicudahe relative motion but to the left!

It is not commonly known that Leonard Euler alreadt 749 derived analytically what was
essentially the Coriolis acceleration (fig. 18).

Otons I'unc de ces équations de autre, & nous aurons:
(2drd @ ——rdd@) (tang@ ~~cot ¢) —o
ou bien 2drd® — rddQ — o

Multiplions la premicre par cot @ & la feconde par tang @, & nous
aurons cn les ajoutant enfemble :

(ddr—rd®*) (cot - tang @) —= — 1 V42 (cot @ -+ tang @)
ou bien ddr — rdQP3 —= — £ V d:2,

Fig. 18: Leonard Euler’'s 1749 derivation of the Cligiacceleration (2d) and the so-called Euler cceleration
(rddd), which is the acceleration due to variationshia angular velocity.

11. Popular “common sense” explanations of the Canlis effect

The common explanation Foucault pendulum is nobtilg case where “common sense” collides
with mathematical or scientific truth. In 1735 GgemHadley (1686-1768) suggested from a “common
sense” view that, since the surface of the eartheaequator moved faster than the surface at highe
latitudes, air that moved towards the equator wouédiually lag behind and be observed as a NE
wind north of the equator, SE wind south of theagqu(fig. 19a).
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Hadley’s model was a great step forward for itsetimecause it introduced the rotation of the eamth f
the first time. But his “common sense” explanat®imcorrect for three reasons. Bodies moving
under frictionless conditions on the surface obtating planet will not conserve their absolute
velocity. Even if they did, Hadley’'s scenario witlathematically only explain half the Coriolis force
Finally, Hadley’s explanation suggests that théea#ibn only occurs for meridional motion. In 1843
the American Charles Tracy thought he could expdso the deflection of east-west motion by
erroneously invoking great circle motion, an expléon that is still found in many popular books in
meteorology (fig.19b).

23°N

ey —

a) b)

Fig. 19: Two erroneous images of the deflectionlmeism: a) conservation of absolute velocity anchb)ion
along great circles. The latter appears to worlefmtward motion, but not for westward.

Coriolis’ 1835 paper did not do away with erroneousitive explanations. The paper was highly
mathematical and not easily accessible. In 184 Fthech mathematician Joseph L. F. Bertrand
(1822-1900) suggested to the French Academy a tdietj derivation. He combined two “common
sense”, but erroneous, assumptions: a) the defteaticeleration is due to conservation of absolute
velocity and b) the deflective acceleration ontating turntable is constant and only due to the
Coriolis effect. The first assumption underestirsdtes Coriolis effect and the second overestimiates
- so the errors cancel o\tig.20).

AR
AS

Fig. 20: Joseph Bertrand and his “simplified” datien. An object on a turntable at a distance Riftbe centre
of rotation is moving radially outwards with a ctarst speed ¥ AR/At . Due to the rotatiof the object is
subject to a deflective acceleration a, which suased constant. The deflected distanBeduringAt can be
expressed both a@S=a(\t)%/2 andAS=Q2 ARAt which yields a=2V,.

Bertrand’s derivation became popular and enteraggonaogy in the 1880's. If we today are
grappling to understand the Coriolis effect, onarse of confusion is this “simple” but deceptive
derivation, which appears to justify two frequernsconceptions.
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12. Not only the Coriolis effect...

It is often said that what makes dynamic meteompMdifficult is its mathematics, which contains non-
linear differential equations. But the non-lineamakespredictionsdifficult because of the

“Butterfly Effect”. The mathematics of the Corioksfect, a cross-product of two vectors, is not
particularly difficult and idinear. Euler’s equation has been used in celestial mechidor 250 years
without causing any confusions and endless debBtgsis equation relates to absolutemotion,
whereas the Coriolis force relategétative motion, which seems to be difficult to comprehend
intuitively.

But frictionless motion is even more out of reatleweryday experience. Correspondents to
“American Journal of Physics” have noted that ursitg students nourish naive, Aristotelian, ideas
about how and why things move. The crux of the emattight not lie in the mathematics but in our
common senses which are still Aristotelian. Fomepd, according to American university teachers
of physics many students believe that forces keelels in motion and, conversely, that in the
absence of forces bodies are at rest. There ameasons to assume that students in meteorology are
immune to this “Aristotelian physics” as it has bealled.

But the confusion in dynamic meteorology does miy depend on misinterpretations of the Coriolis
effect. There are some other central principlesa@mteptual models which needs to be critically re-

drd d?
examined. If we multiply Euler’s equationd—id—fH dt? =0with r and integrate, we will get
.49

r =c which is today called “angular momentum conseordti This is one of the fundamental

dt?
laws of both classical and modern physics. It retpd the motion of rotating objects from galaxges t
elementary patrticles. One is the faithful workershe meteorological garden is the ice skater who
regulates her rotation by her arms using the grlaaf angular momentum conservation.

Fundamental physical laws are of course powerflktm the scientific workshop. But as with other
powerful tools its use is not always trivial anahdt properly handled can cause a lot of harm.tBist
is the start of a new article...

Anders Persson
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