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Solution to øving 11

Exercise 1

a) This system can be viewed as three resistances connected in series: the two 60 cm long Cu
wires and the resistance R = 20 Ω. The resistance of the two Cu wires becomes

RA =
l

σA
= · 1.20m

5.8 · 107 Ω−1m−1 · 2 · 10−6m2
= 0.01 Ω

The same current I passes through the whole system. It is

I =
V

R + RC
=

1.5 V

20.01 Ω
= 0.07496 A ≃ 0.075 A

according to Ohm’s law. Thus, we obtain the voltage drops

VR = RI = 20 Ω · 0.075 A ≃ 1.5 V

over the resistance R and

VC = RCI = 0.01 Ω · 0.075 A = 0.00075 V

over the two Cu wires together. In conclusion: Negligible voltage drop in the two Cu wires.

b) We found the current I in a) above. The dissipated effect in the resistance R becomes

P = VRI = 1.5 V · 0.075 A = 0.1125 W ≃ 0.11 W

c) Here, we must first find the density of free electrons n. Next, we may use I = j · A = nevA
in order to calculate the mean drift velocity v.
In Cu, we have a mass density 8960 kg pr m3. This corresponds to 8960/0.06354 mol = 141014
mol = 141014 ·6.02 · 1023 atomer = 8.49 · 1028 atoms, and hence equally many free electrons,
assuming one free electron pr Cu atom. Mean drift velocity becomes

v =
I

neA
=

0.075

8.49 · 1028 · 1.6 · 10−19 · 2 · 10−6
= 2.76 · 10−6 m/s = 2.76µm/s

Average thermal velocity for the electrons may be estimated by setting the kinetic energy equal
to the thermal energy:

1

2
mv2 =

3

2
kBT

⇒ v =

√

3kBT

m
≃ 105 m/s
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Here, kB = 1.38 · 10−23 J/K is Boltzmann’s constant. We see that the mean drift velocity is
roughly 11 orders of magnitude smaller than the average thermal velocity. In other words, it
takes several hours for a given electron to get from one end to the other in our system!

Exercise 2

a) At first, we should try to realize that what we have here is the following circuit: [a parallel
connection of R1, R2 and R3] coupled in series with [a parallel connection of R4 and R0 = 0]
in series with [R5]. In other words, the resistance R4 is ”cut short”, so that no current passes
through R4. (Alternatively: We have the same value for the potential on each side of R4. Then,
no current can pass through it.) Thus, the total resistance is

R =
(

1

R1

+
1

R2

+
1

R3

)−1

+ R5

b) It should be clear that the total current I in the circuit must be the same as the current
I5 passing through R5. Further, it should also be clear that I must distribute itself on the
three currents passing through R1, R2 and R3: I = I1 + I2 + I3. In a) above, we have already
concluded that no current passes through R4: I4 = 0.
The voltage drop across the three upper resistances is the same:

V ′ = R1I1 = R2I2 = R3I3

The voltage drop across R5 is

V ′′ = R5I5 = R5I = R5

E
R

These two together must equal the value of the voltage source:

E = V ′ + V ′′

Thus

V ′ = E − V ′′ = E − R5

E
R

= E
(

1 − R5

R

)

And finally,

I1 =
V ′

R1

I2 =
V ′

R2

I3 =
V ′

R3
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Exercise 3

The capacitor will be discharged by electrons moving from the negatively charged side, through
the resistor, to the postively charged side. In other words, a positive current will run through
R, from the positively charged plate.

I

−QR

Q
C

In the figure, I has been drawn with direction towards the positive plate, despite the conclusion
above, that positive I runs in the opposite direction. This is done, since I prefer to keep the
relation

I = +
dQ

dt

(and not with a minus sign). Kirchhoff’s voltage rule yields

−RI − Q

C
= 0

i.e.
dQ

Q
= − dt

RC

Integration on both sides gives
Q = ke−t/RC

and the initial condition Q(0) = Q0 determines the integration constant k:

Q0 = ke0 = k

so that
Q(t) = Q0e

−t/RC

The current then becomes

I(t) =
dQ

dt
= − Q0

RC
e−t/RC

As expected with a minus sign, so that positive current I runs counterclockwise in the figure
above.

3



Exercise 4

a) Kirchhoff’s voltage rule (K2) gives

E =
Q

C

Also, we have

I =
dQ

dt

Hence:
Q(t) = V0C cos ωt

and
I(t) = Q̇ = −V0ωC sin ωt

Sketch of E(t) (in the figure, V (t), solid line) and I(t) between t = 0 and t = T = 2π/ω:
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We see that the applied voltage E(t) and the resulting current I(t) in the circuit are not at
maximum, zero etc at the same instants. We say that we have a phase difference between E(t)
and I(t). For this simple circuit, with only a single capacitor, we see that I is zero when E is at
a maximum value, and the other way around. Hence, the two have a phase difference of π/2.
This is most clearly seen if we write I on the form

I(t) = I0 cos(ωt − α)

We have
− sin ωt = cos(ωt + π/2)
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Hence, we see that I0 = V0ωC and α = −π/2. The impedance of this simple circuit, i.e., a
single capacitor with capacitance C, becomes

ZC(ω) =
V0

I0

=
1

ωC

Notice that the impedance increases when the angular frequency becomes smaller. In the limit
ω → 0 the impedance ZC approaches infinity, which is quite reasonable: No direct current
through a (ideal) capacitor. In the opposite limit, ω → ∞, ZC approaches zero, which is
also reasonable: The charge on a given plate oscillates between +V0C and −V0C, no matter
what the frequency is. When the frequency is increased, the current in the circuit will increase
linearly with the frequency. (Later, we will see how the magnetic field stops the current from
increasing beyond limits.)

b) Kirchhoff’s voltage rule (K2) gives

E =
Q

C
= RIR

whereas Kirchhoff’s current rule (K1) gives

I = IC + IR

Also, we have

IC =
dQ

dt
Hence:

IR(t) =
V0

R
cos ωt

Q(t) = V0C cos ωt

IC(t) = −ωCV0 sin ωt = ωCV0 cos(ωt + π/2)

Total current delivered by the voltage source becomes

I(t) =
V0

R
cos ωt− ωCV0 sin ωt

We want to have I(t) on the form

I(t) = I0 cos(ωt− α)

with amplitude I0 = V0/Z, where Z is the impedance of R and C coupled in parallel, while α
becomes the phase difference between E(t) and I(t). We have

cos(ωt − α) = cos ωt cos α + sin ωt sin α

Hence, upon direct comparison:

cos α

Z
=

1

R
sin α

Z
= −ωC
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These two equations, with the two unknowns Z and α, are easily solved, and we find

Z =
R

√

1 + (ωRC)2

I0 =
V0

R

√

1 + (ωRC)2

α = − arctan(ωRC)

In the limit ω → 0, we should recover well known results from the DC examples in the lectures,
and indeed, we do: Z → R and α → 0 so that I0 → V0/R. All the current goes through the
resistor R, and the capacitor C now represents an open circuit where no direct current can run.

With the given numerical values we have

ωRC = 2π · 106 · 10 · 16 · 10−9 = 1.0

so that

I0 =
1.0

10
·
√

2 = 0.14 A

α = − arctan 1.0 = −45◦

Sketch of E(t), I(t), IR(t) and IC(t):
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Notice that IR oscillates in phase with E , whereas IC has a phase difference of π/2 with respect
to E . The phase difference between E and the total current I = IR + IC becomes, with the
given numerical values, somewhere in between, i.e., 45 degrees.

Sketch of α, I0 and Z (with α in radians and ωRC between 0.016 and 160 along the horizontal
axis):
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Notice that the phase difference α between the applied voltage E and the total current I is
approximately zero for small frequencies. In that case, most of the current goes through the
resistor (I ≃ IR), and the circuit behaves roughly as it would have done without the capacitor
present. For high frequencies, α is approximately -90 degrees. In this case, most of the current
goes in the ”branch” with the capacitor (I ≃ IC), and the circuit behaves roughly as it would
have done without the resistor present.
Hence, for low frequencies, the current amplitude I0 is appoximately constant, i.e., independent
of the frequency, and for high frequencies, I0 increases linearly with the frequency.
We see that the transition between ”low” and ”high” frequencies happens where ω ≃ 1/RC =
1/τ , where τ is the time constant for such an RC circuit.
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Exercise 5

1. The full region between r = a and r = b may be viewed as many resistances dR connected
in series, where each resistor is a thin spherical shell with radius r and thickness dr:

dR =
ρ dr

4πr2

The total resistance is found by summing up all these individual resistances, i.e., by integrating
from r = a to r = b:

R =
∫

dR

=
∫ b

a

ρ dr

4πr2

=
ρ

4π
|ba

(

−1

r

)

=
ρ

4π

(

1

a
− 1

b

)

2. The given expression for the current I shows that we may here use Gauss’ law for the electric
field to determine I:

I =
1

ρ
· Q

ε0

We must assume that the charge entering into the inner conductor immediately distributes itself
over the spherical surface at r = a before is starts on its way through the material between
r = a and r = b.
The potential difference between the inner and outer conducting shell is easily determined,
since we know the electric field E:

∆V = Va − Vb

= −
∫ a

b
E(r) dr

=
Q

4πε0

|ab
1

r

=
Q

4πε0

(

1

a
− 1

b

)

From these expressions, it follows that the resistance is

R =
∆V

I
=

ρ

4π

(

1

a
− 1

b

)
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