Et lageme er i statisk likevekt når:
\[\sum F_i = 0 \quad (\text{sum av ytre krefter} = 0) \]
og
\[\sum \vec{M}_i = 0 \quad (\text{sum av ytre dreiemoment} = 0, \text{mhp til valgt referansepunkt} \vec{F}_0) \]

\[\Sigma F_x = 0 \quad \Rightarrow \quad f_B = N_A \quad (1) \]
\[\Sigma F_y = 0 \quad \Rightarrow \quad N_B = mg + Mg \quad (2) \]
\[\Sigma \vec{M}_B = 0 \quad \Rightarrow \quad mg \frac{1}{2} \cos \varphi + Mg \delta_1 \cos \varphi - N_A L \sin \varphi = 0 \quad (3) \]
\[f_B \leq \mu_B N_B \quad [\Rightarrow \quad f_{B_{\text{max}}} = \mu_B N_B] \quad (4) \]

\[\Rightarrow \quad \frac{m}{2} + \delta M \leq \mu_B \left(\frac{m+M}{M} \right) \tan \varphi \]
\[\Rightarrow \quad \varphi_{\text{min}} = \arctan \left\{ \frac{\frac{m}{2} + \delta M}{(m+M) \mu_B} \right\} \quad (gitt \ \varphi) \]
\[\delta_{\text{max}} = \frac{m+M}{M} \mu_B \tan \varphi - \frac{m}{2M} \quad (gitt \ \varphi) \]

Hvis \(\mu_A > 0 \), blir problemet ubestemt. \(\Sigma \tau_A = 0 \) gir ikke nyttig informasjon (\(f_A, f_B, N_A, N_B \)) men bare 3 linjener.
(Må betrakte stigen som nessessær for å "kome i mål".)
Fles 2: Balansere på sylinder

Klass

Sylinder

Stabil eller ustabilt likevekt?

Kriteriell løsning:

Klass vippes liten vinkel φ.

\Rightarrow CM flyttes lp horisontalt til CM', og kontaktpunktet A flyttes rp horisontalt til A'.

Stabil likevekt hvis $\text{lp} < \text{rp}$ (dvs. $l < r$) fordi

$\vec{T}_{A'} = \vec{R}_{CM} \times mg$ da gir rotasjon tilbake mot likevekt.

Via energibetraktninger:

$y_{CM} = r + l$

$y_{CM'} = (r + l) \cos \varphi + \text{rp} \sin \varphi$

Klassens pot. energi (velger $U(\varphi) = 0)$:

$U(\varphi) = mg y_{CM} - mg y_{CM'}$

$= mg \left[(r + l)(\cos \varphi - 1) + \text{rp} \sin \varphi \right]$

Små vinkler, $\varphi \ll 1$: [Se Rottmann]

$\cos \varphi \approx 1 - \frac{1}{2} \varphi^2$, $\sin \varphi \approx \varphi$

$\Rightarrow U(\varphi) \approx mg (r + l) \left(-\frac{1}{2} \varphi^2 \right) + mg \text{rp} \varphi$

$= \frac{1}{2} mg (r - l) \varphi^2$
\[U(q) = \frac{1}{2} mg (r - l) q^2 \]
Stabil likevekt ved \(q = 0 \) hvis \(r > l \).
Klassen vippes fram og tilbake.
Med \(U(q) \sim q^2 \) har vi en sikkert harmonisk oscillator.

Svingninger \[YF \text{ 14, LL 9} \]

= oscillasjoner = periodisk oppførsel omkring likevekt

Eksempel: pendel, instrumentstreng, vibrerende atomer i molekyler og krystaller,

Harmonisk oscillator 1D \[YF \text{ 14.2, LL 9.1-9.3} \]

\[\begin{array}{c}
\begin{array}{c}
\text{Likevekt (dvs F = 0) ved x = 0.} \\
\text{Kraft på m fra fjær med} \\
\text{strukket (x > 0) er sammenpresset (x < 0)} \\
\text{fjær:} \\
F = -kx^2 \end{array} \\
\end{array} \]

Hooke's lahar

\[\begin{align*}
N2: \quad -kx &= m \ddot{x} \quad \Rightarrow \quad \ddot{x} + \frac{k}{m} x &= 0
\end{align*} \]

\[\text{Innfor} \quad \omega = \sqrt{\frac{k}{m}} \quad \Rightarrow \quad \ddot{x} + \omega^2 x = 0 \quad \text{1D harmonisk oscillator} \]

Både sin ut og cos ut er løsning, fordi
\[\frac{d^2}{dt^2} \left(\sin \omega t \right) = -\omega^2 \sin \omega t \quad \text{og} \quad \frac{d^2}{dt^2} \left(\cos \omega t \right) = -\omega^2 \cos \omega t \]
Generell løsning: \(x(t) = B \cos \omega t + C \sin \omega t \)
\[\omega t \quad x(t) = A \cos (\omega t + \phi) \]
(Identisk hvis \(B = A \cos \phi \) og \(C = -A \sin \phi \); sjekk selv)
Størrelser og begreper:

- \(A = \text{amplitude} = \text{maks utswing} \)
- \(\omega = \text{vinkelfrekvens} = \text{vinkelhastighet} \quad [\omega] = \text{s}^{-1} \)
- \(T = 2\pi/\omega = \text{periode} = \text{tid pr svingning} \quad [T] = \text{s} \)
- \(f = 1/T = \text{frekvens} = \text{antall svingn. pr tidsenhet} \quad [f] = \text{s}^{-1} = \text{Hz} \)
- \(\omega t + \varphi = \text{svingningens fase} \)
- \(\varphi = \text{fasekonstanten} \quad [\varphi] = \text{1} \)

Fra \(x(t) = A \cos(\omega t + \varphi) \) finnes hastighet \(\dot{x} \) og akcelerasjon \(\ddot{x} \):

\[
\dot{x}(t) = -A \omega \sin(\omega t + \varphi) = \omega A \cos(\omega t + \varphi + \frac{\pi}{2})
\]

\[
\ddot{x}(t) = -A \omega^2 \cos(\omega t + \varphi) = -\omega^2 A \cos(\omega t + \varphi + \pi) = -\omega^2 x(t)
\]

Må kjenne 2 initialbetingelser, f.eks. \(x(0) = x_0 \) og \(\dot{x}(0) = v_0 \), for å fastlegge \(A \) og \(\varphi \):

\[
x_0 = A \cos \varphi, \quad v_0 = -A \omega \sin \varphi
\]

\[
\Rightarrow v_0 / \omega = -A \sin \varphi \Rightarrow x_0^2 + (v_0 / \omega)^2 = A^2 \Rightarrow A = \sqrt{x_0^2 + (v_0 / \omega)^2}
\]

\[
\text{og tan} \varphi = -(v_0 / \omega) / x_0 \Rightarrow \varphi = -\arctan \left\{ v_0 / x_0 \omega \right\}
\]