Institutt for fysikk, NTNU

TFY4155/FY1003: Elektrisitet og magnetisme

Spring 2005

Øving 1

Guidance: January 13. and 14.

Deliver no later than: Monday January 17.

Exercise 1

a) The components of a vector \mathbf{A} are $A_x = 8.5$ and $A_y = -1.3$. The length $A = |\mathbf{A}|$ of this vector is then

- A) 5.6
- B) 7.2
- C) 8.6
- D) 9.8

b) The angle between the x axis and the vector $\mathbf{A} = -3.7 \,\hat{x} + 2.3 \,\hat{y}$ is (in degrees, counterclockwise)

- A) 32
- B) 148
- C) 212
- D) 238

c) The components of two vectors \boldsymbol{A} and \boldsymbol{B} are, respectively, $A_x = 4.1$, $A_y = -7$ and $B_x = -6.6$, $B_y = -3.1$. The length of the vector $\boldsymbol{B} - \boldsymbol{A}$ is then

- A) 11.4
- B) 14.6
- C) 19.5
- D) 23.3

d) The components of two vectors \boldsymbol{A} and \boldsymbol{B} are, respectively, $A_x = -6.1$, $A_y = -5.8$ and $B_x = -9.8$, $B_y = 4.6$. The scalar product $\boldsymbol{A} \cdot \boldsymbol{B}$ is then

- A) -9.7
- B) 0
- C) 33.1
- D) 86.5

Exercise 2

Determine the gravitational force F_g between two oxygen molecules (O₂) separated by 300 Å. Is F_g attractive or repulsive?

The two oxygen molecules are given an extra electron each. How big is the electric force F_e between the two ions (O_2^-) ? Is F_e attractive or repulsive?

Determine the ratio between F_e and F_g .

[Molecular oxygen has mass 32 g/mol, 1 mol = $6.02 \cdot 10^{23}$, the gravitation constant is $G = 6.67 \cdot 10^{-11}$ m³/kg·s², e = the elementary charge = $1.6 \cdot 10^{-19}$ C and 1 Å = 1 angstrom = 10^{-10} m]

Exercise 3

Two equal point charges q are positioned on the x axis in x = a and x = -a, respectively. Determine the resulting electric force \mathbf{F} on a third point charge -q which is located on the y axis (y > 0) in a distance $\sqrt{5} a$ from the two others. Draw a figure with the three charges where you clearly indicate the direction of \mathbf{F} . [Notation: **vectors** with **bold** letters.] Determine a

numerical value of F when $q=2~\mu\mathrm{C}$ and $a=4~\mathrm{cm}$. What is the force on the charge on the y axis if the point charge in x=-a changes sign? (Draw a figure.)

Exercise 4

- a) Six identical charges q are located in the corners of a regular hexagon. What is the force on a test charge Q in the centre of this hexagon?
- b) One of the six charges are removed. What is the resulting force on Q? Draw a figure and explain your reasoning.
- c) Replace "six" with "seven" and repeat question a!

Exercise 5

- a) Two point charges 3q and -q are located on the x axis in x=0 and x=a, respectively. Explain why possible equilibrium positions for a third charge q must be on the x axis.
- b) There is one equilibrium position x_0 on the x axis for this third charge. (In addition to the "singular" point x = a.) Determine x_0 . Argue, without further calculations, that this equilibrium position is unstable with respect to a small displacement in the x direction. (Alternatively, with further calculations: Consider the stability of the equilibrium by looking at the value of dF/dx in $x = x_0$.)

[In equilibrium, there is no net force on the charge. If the charge is displaced a distance Δx from the equilibrium position, it will be influenced by a force. If this force acts in the same direction as the displacement Δx , the equilibrium is unstable. In the opposite case, it is stable.]

Some answers:

Exercise 2: $F_e/F_g \simeq 10^{33}$

Exercise 3: F = 8.0 N.

Exercise 5b: $x_0 = (3 + \sqrt{3})a/2$.