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FEzercise 1

The potential difference AV between two points in space is given by
B
AV=%—W=—LE%H
In this exercise, we have a uniform electric field E = Ey Z, so we may write
B
AVzJ%ﬁAdl

where A represents the origin, (0,0), and B the three points given in the text. We find:
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Ezercise 2
a) With our choice for the polar angle 6, we see from the figure that
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b) We use the superposition principle to determine the potential from the two point charges.
With the point (z,z) in a distance r; from ¢ and 75 from —¢, we have
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The distances 71 and 75 in terms of z and z are found directly by looking at the figure.

The potential on the x axis is

V(z,0)= 2 ! ! 0
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The potential on the z axis is
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2= dre, |z —a/2| |z+a/2|

Note that we must take absolute values in order to have one expression valid throughout the z
axis. With z > a/2:
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With z < —a/2:
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A sketch of V(0, 2):

V(0,2)

—a/2

a2 z




¢) We use the hint given in the text, in addition to the following figure, and obtain:

Vire) = -4 (l—l)
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Alternatively, proceeding a bit more slowly: From the figure, we see that
a
rH o~ r—= 3 cos 6
a
ry ~ 1+ 2 cosf

When 7 > a we may expand both 1/ and 1/r5 in power series around 1/7:
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Is it reasonable that the potential from an electric dipole falls off faster than the potential
from a point charge (i.e., an electric “monopole”)? Yes, because the negative and the positive
point charges of the dipole contribute with opposite signs to the total potential. Thus, the
contributions to the potential from the two point charges partly cancel each other. (On the z
axis, the two contributions cancel ezactly.)

Extra, if you wonder how one should proceed in order to find the dominating correction to the
result obtained above:

A first thought might be to continue the series expansion that was started above, and include
sufficiently many terms so that a dominating correction was obtained. If we include one more
term, nothing new is obtained since that term comes with the same sign in the expansion of
the two square roots, and therefore (with the minus sign in front of one of them) cancel each
other. We must include {wo more terms:
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Here, we used the series expansion (1 +z) ' =1—xz+ 2% — 2z® + ... (valid for |z| < 1). Not
a bad try. However, there is a catch here: The starting point for this series expansion was an
approximation itself, namely
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And the errors we do in these approximations are of the same order of magnitude as the
correction term we are looking for!

The solution is obtained by going back to the exact expression for V', with r; and 7, expressed
in terms of cartesian coordinates x and z. The calculation is not difficult, but rather tedious,
so the details are skipped here. If my calculation is correct, the answer is
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Here, we have included all corrections that are an order a?/r? smaller than the dominating
result. The next term in this series will be further reduced, by an additional factor a?/r?%.
In series expansions like this, the first term that is not included will always be smaller than
the last term that we did include, since the series is a polynomial with increasing powers of
a parameter which is small compared to 1. (In our particular case, we see that for directions
given by cos®f ~ 3/5, the first correction actually disappears. In that case, one may have to
look at the next term in the series expansion.)

1 _1+CLCOSQ+ acosf 2+ acosf 3+ ] acost9+ acosf\’ acosf 3+
oy 2r 2r 2r 2r 2r or



FEzercise 3

a) C
F =qFE =ma
Newton’s 2. law! Here, ¢ = —e, so the acceleration of the electron becomes
a=-"E
m

i.e., to the left.

b) C
AV:—/E-dl:O

provided that
d 1 E

c) B

You know that a body initially at rest will fall in the gravitational field of the earth. In other
words, it moves in the direction of lower potential energy. In the same way, a charged particle
initially at rest will move in the direction of lower potential energy in an electric field.
Mathematically: (F' = force, ¢ = charge (¢ < 0), U = potential energy, V = potential)

F = qE=—|q|E

E = -VV
U = ¢V=—|qlV
F = —-VU=-¢VV =|¢q|VV

The movement of the particle must obviously be in the same direction as F' (given that the
initial velocity is zero), so we see that the movement will be in the opposite direction of E, and
in the direction of higher potential V.

d) D
The total potential energy of a system of point charges is

U= Z q:9;
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where the sum is taken over all pairs of charges ¢; and ¢; separated by distances r;;. In our
case, all charges have the same absolute value. We have 4 pairs with opposite sign, where the
charges are 5 cm away from each other, and 2 pairs (diagonally) with equal sign, where the
charges are v/50 cm away from each other. Hence, we obtain
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e) D

The point charges (J; and ()2 are not being moved, so we do not have to consider the mutual
potential energy for this pair when only the third charge (the electron) is moved. We must
calculate the potential energy due to the interaction between the electron and the two fixed
charges, before and after the displacement, respectively. Alternatively, we may start by calcu-
lating the potential from the charges (J; and @5 in the positions A and B, i.e., V4 and Vg, and
next find the change in potential energy, AU = Up — Uy = —eVp — (—e)Va = —e(V — V).
The potential in distance r from a point charge ¢ is
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i.e., the Coulomb potential. The relevant separations in this case are 0.6 m (from @; to A and
from @9 to B) and +/0.62 + 0.82 = 1.0 m (from @; to B and from @, to A). Thus,
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and finally
AU = —e- AV ~ +1 keV
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9) D
Energy conservation yields
§m1)2 =qV

Le., acceleration of a particle with charge ¢ and mass m through a potensial difference V' results
in a reduction of potential energy, ¢V, and a corresponding increase in kinetic energy, muv?/2.
Equal speed for the two particles then implies
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in other words




