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Ezercise 1

a) Sketch of the charge density p(r):
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A small volume element dV' in position 7 contains a charge dqg = p(r)dV. Here, we have a
spherically symmetric charge distribution, so we may use a thin spherical shell with radius r
and thickness dr as volume element: dV = 47r? dr. The total charge on the sphere is obtained
by summing up the charge in such spherical shells, i.e., we must integrate from » = 0 to r = R:
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b) With spherically symmetric charge distribution, we choose a sphere with radius r as our
Gaussian surface. The integral in Gauss’ law then becomes

7{E-dA=E(T)-47rT2



If r > R, the whole charge Q@ = 8mpyR3/15 is inside the Gaussian surface. Then, the electric
field becomes
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If r < R, the charge inside the Gaussian surface is

Qin(T) =

so the electric field becomes

Sketch of E(r):
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FEzxercise 2

Here, the two spheres and the metal wire is a connected electric conductor. This means that
we have the same value of the electric potential on the two spheres. Since the two spheres are
far away from each other, we have a spherically symmetric charge distribution on the surface
of each sphere. If sphere 1 has charge (1, the potential on this sphere is V; = Q1 /4meoR;. Let
us show this: We know that the electric field outside the sphere is the same as if the whole
charge QQ; was located at the centre of the sphere, i.e., Fi(r) = Q/4meor?, directed radially
outwards (if @; > 0). With the choice V; = 0 at infinity, we find the potential on the sphere
by integrating the electric field:

Vl(Rl)=—/R1E1(7")dr:—/R1 @ g @
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And with charge ()2 on the other sphere, the potential there is
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Equality between these two potentials results in
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At the same time, we must of course have ()1 + Q2 = @, so that
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The electric field strength on the surface of sphere j (j = 1,2) is

E-(R-):ﬁ: Qj — Q
I €o 47T€0R]2- 47TE()Rj(R1 + Rg)

In other words: More charge on the sphere with the bigger radius. And biggest electric field
strength on the sphere with the smalles radius.

FEzercise 8

We must expect that CO, is linear when the dipole moment is zero. Even if we don’t know
whether the C atom or the O atoms attract the binding electrons more strongly, we must at
least expect some difference so that there is a small negative charge near the O atoms, and
hence a small positive charge near the C atom, or the other way around. In real life, the former
is the case, so if we ”assign” a charge —q to each O, we must assign a charge +2¢ to C (since
the molecule is overall electrically neutral). The total dipole moment of the molecule can then
be thought of as the (vector-) sum of two dipole moments, associated with two pairs of charges
g and —q:
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We see that with a linear structure, p = p, +p, = 0, and with a bent structure, we have p # 0.

We may argue similarly in order to determine the structure of NH; and BF3. First: From
symmetry reasons, all the bond lengths N-H must be equal, and correspondingly for B-F. In
addition, all bond angles H-N-H must be equal, and correspondingly for F-B-F. Then only
two possibilities exist: Either the molecule is planar or it is pyramidal, with the 3 identical
atoms on the ”floor” and the last one on top. Also in these two molecules we must expect
different electronegativity, i.e., ”ability to attract extra electrons”. In BFj, the F becomes
slightly negative (—¢) and B slightly positive (4+3¢), in NH3, H becomes slightly positive (+q)
while N becomes slightly negative (—3¢). In each molecule, we end up with a dipole moment
equal to the vector sum of three dipole moments associated with three pairs of charges ¢ and
—¢q. If the molecule is planar, the sum of these three is zero, if the molecule is pyramidal,
the sum is not zero. The conclusion is: BFj is a planar molecule and NH3 has a pyramidal
structure. And that’s exactly what is found experimentally: In BF3, the angle F-B-F is 120
degrees, in NHj3, the angle H-N-H is about 107 degrees.
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Ezercise 4

a) In the lectures, we found that the capacitance of a parallel plate capacitor is

A
C() = &0
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where A is the plate area and d is the distance between the plates. With numbers inserted, we
find

0.52
Cy=2885-10"12. 0oL 2.21-1071%

In the SI system, capacitance has the unit F (farad). With the prefix p for pico, which means
1072, we may write Cy = 221 pF.

b) We know that we have (approximately) uniform electric field between two (approximately
infinitely) large parallel plates with uniformly distributed charge of opposite sign. Hence (with
V' = potential difference between the plates):
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Since the capacitance, pr definition, equals the charge () divided by the potential difference V,
we have

Q=C)V =221-10"19.96=2.12-10"8C

Or, with the prefix n for nano, i.e., 107°: Q = 21.2 nC.

¢) In the lectures, we have shown that if the volume between the plates is filled with a dielectric
with relative permittivity (dielectric constant) e, the capacitance is increased by a factor
g, compared to an air-filled capacitor. Here, the plate charge () does not change, so if the
capacitance increases by a factor ¢,, the potential difference must decrease by the same factor.

Hence:
96

1.2
The electric susceptibility x. equals €, — 1, so for water, x, = 79. The permittivity of the
medium (here: water) is € = ¢,y so for water we have ¢ = 80 -8.85-107'% = 7.08 - 10 10.
From Coulomb’s law, we know that a possible unit for electric permittivity is C?/Nm?. Since
capacitance has unit F, an alternative SI unit for permittivity is F /m. Both relative permittivity
and electric susceptibility are dimensionless quantities.
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d) The electric susceptibility x. was defined by the assumed linear relation between the polar-
ization P and the electric field E:
P= EOXeE

Hence:
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P=c¢y(e, —1)E =go(e, — 1)—Ey =8.85-107"2. 5o 9600 8.39. 1078 C/m”
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Maximum theoretical polarization in water is:

Ni - Pyann _ 6.02-10%-6.2- 1073 )
Pma.x = = ~ 0.21
U 18106 0.21 C/m
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Here, Ny = 6.02 - 10?2 is the socalled Avogadro number, i.e., the number of molecules in one
mole, and v, = 18- 10 % m3 is the molar volume of water.
We see that the polarization P is only a small fraction of the maximum theoretical polarization
P, ax, more precisely

P/Ppax ~4-1077
In other words, the water molecules do not exactly line up perfectly. It is more a small tendency

to alignment of electric dipoles along the external electric field.

FEzxercise 5

The two narrow rings (see figure in the exercise text) in mutual distance d = 222 = 2R cosf 2
have charge £dq = £0dA = to - (27p) - (Rdf) = £o - (2nRsinf) - (RdP). The dipole moment
of the sphere is therefore:

w/2
= / 220 - 2w R? sin 0d6
0
w/2
= / 2R cos B30 - 2 R? sin 0df
0

w/2
= 47R30% / cos 0 sin HdO
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