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Guidance week 9 and 10.

Question A B C D
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Comment: In this gving, you were given several hints. On the midterm exam, you may not be
given so many hints like these.

1) Obviously, B is a possible solution: If b — 0, we have essentially two point charges —@ in
x = +a, and the charge ¢ is pulled towards the origin. The energy of the point charge will
change between potential and kinetic, with the lowest potential energy and the largest kinetic
energy in the origin, and zero kinetic energy in y = +Ay.

Next, consider if A is possible: First thought might suggest no, because when ¢ comes very
far away, it sees essentially a point charge —2Q) + @ + @ — 2Q) = —2(@), and thereby feels an
attractive force, i.e., directed back towards the origin. This way of thinking would have been
correct if ¢ started with zero velocity far out on the y axis. However, ¢ starts with zero velocity



in y = Ay. Now, if we let b become very large, the potential from the charges on the z axis is
approximately
2Q
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V(Ay) ~

Here, we have neglected the contribution from the two negative charges, since b > a. We have
also assumed Ay < a and approximated the distance between ¢ and @ with a. (The latter was
not really necessary.)

Here comes the point: We have V' (Ay) > 0, and hence a positive potential energy for the charge
q: U = ¢V (Ay). With zero initial velocity, this is also the total energy of the charge. In the
limit y — oo, we have zero potential, hence zero potential energy for the charge ¢q. Because
of energy conservation, this means that ¢ has a positive kinetic energy for all y > Ay, and
therefore it will disappear towards y = co. The following figure illustrates the energy relations
for the charge ¢ when b > a:

U(y)=qV(y)

T  (kinetisk energi)

If you are convinced that both A and B are possible outcomes, you don’t really need to consider
C: The correct answer must be D.

However, from the figure we may also realize that C is a possible outcome: As we reduce the
value of b, we must reach a point where V(Ay) = 0. Then the total energy is exactly big enough
for the charge ¢ to disappear to infinity. A further reduction in b results in a negative value
of V(Ay), and hence a negative total energy. In that case, the total energy is simply not big
enough for ¢ to "escape”. It will start moving out on the y axis until it reaches a position y,
where V' equals V' (Ay). In this position, we must have zero kinetic energy, 7' = 0. The charge
reverses its direction and returns to its starting point, and so it continues to oscillate back and
forth.

U(y)

If we have friction, the particle will lose some energy (as heat to its surroundings) and perform



oscillations with smaller and smaller "amplitude”. In the end, it will stop in the equilibrium
position .

2) The electron mass m, and the proton mass m, are given, so it’s just a question of evaluating
the ratio. This is in fact quite important, and something one encounters many times in other
physics courses: Since the mass of the electron is so small, they will move much faster than
the atomic nuclei. From an electron’s point of view, the nuclei essentially do not move! Many
properties of atoms, molecules, and solids can, with excellent approximation, be calculated with
such a simplifying starting point.

3) We know that a charged metal ball would choose alternative 1, namely net charge uniformly
distributed over its surface, and not over its volume. We have proven this via Gauss’ law.
However, it must also be so that this corresponds to the lowest possible potential energy.
Hence, we must have U; < U,, which is only true for alternative C.

How to calculate Us? In the lectures, we calculated U; in two different ways: First by considering
the work necessary to charge the sphere from zero to final charge ). The work required to
increase the charge from ¢ to ¢ + dq is dW = v(q)dq, where v(q) is the potential on the sphere
when it has charge ¢q. Hence,

U=/0QU(Q)dq

Alternatively, we could use that the energy pr unit volume in an electric field is u = g9 E?/2,
so that

U= udV = 1sOEQ dv
all space all space
(See question 11 in gving 9, where this is done for Uy.)
Let us find U, with both methods! First, we imagine that we ”create” the uniformly charged
sphere by starting at the center, and then adding small spherical shells. At some stage in this
process, we have uniform charge density inside radius r, i.e., total charge ¢ = Qr3/R3. The
electric field outside 7 is now E(r') = q/4meor'?, so the potential v at r is

v(r) = — /T E(r')dr' = g _ Qr'/R’

o0 dmegr dmegr

The work required to add a new thin shell of thickness dr and charge dgq is therefore

A7r? dr

dW =v(r)dqg =v(r)pdV = v(r)

ATR3/3

since the charge density p is uniform, i.e., equal to the total charge () divided by the total
volume 47R3/3. The total work required to create the whole sphere must be the integral of
dW , and this is also equal to the total potential energy Us,:

U, = / AW
= / v(r) dg
— /U(T)47T}6323/3 A dr
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Alternatively, by integrating the energy density expressed in terms of the electric field: Using
Gauss’ law, we find that the electric field inside the sphere (i.e. r < R) is E(r) = Qr/4meoR?
and outside the sphere (i.e. r > R) it is E(r) = Q/4weor?. Hence, the potential energy Uy is:

U, =

The same answer!
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4) A charged metal sphere will attract a sphere with the opposite charge. However, it will
also attract a neutral metal sphere because of polarization of the neutral sphere. (See further
discussion in question 9 below.) So, it is always true that at least one of the spheres is charged.
(While it may be true that both spheres are charged.)

5) Gauss’ law yields

for r < R. Hence

E(r)-4nr? =

i.e., constant field strength for » < R. For r > R, the field becomes the same as for a point
charge in the origin, i.e., proportional to 1/r%, the same in all four graphs. Please, note the
”simplifications” that may be done when we have spherical symmetry, and therefore choose a
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spherical Gaussian surface: The surface integral of the electric field simply becomes E(r) - 47r?,
whereas the volume element becomes dV = 4nr?dr. In both cases, the integration over the
directions, i.e., the angles # and ¢, only gave a factor of 4.

6) The glass rod does not touch the metal spheres, so there can be no transfer of charge
between the glass rod and the spheres. However, the positively charged glass rod will attract
free electrons in the metal, resulting in an excess of electrons on the left side of the left metal
sphere. Since the metal spheres are overall electrically neutral, this implies that the right sphere
must end up with a deficiency of electrons, i.e., a net positive charge. This is again polarization
(see questions 4, 9, and 14), or “charging by induction” (see textbooks).

7) Since the capacitance C' pr definition is given by the ratio between the charge ) on the
capacitor and the potential difference AV between the two conductors that make up the ca-
pacitor, we must calculate AV between the two spherical shells. The electric field between the
two spherical shells is 0

7

4rreyr?

E(r)

which is found by Gauss’ law. (With some experience, one should be able to remember that
electric field from a spherically symmetric charge distribution is determined by the charge
”inside” of where we are, and behaves as if all this charge was located in the centre - just like
the gravitational field from a spherically symmetric mass distribution, e.g. the earth.)
Then, we may use .

AV =V (a) = V(b) = — /b E(r) dr

to find the potential difference AV. (We integrate along a radially directed curve, so that
E -dl = E(r) dr(r-7) = E(r) dr.) We obtain:

AV=—/ba @ 4- @ @

drregr? drega  4megh

which yields a capacitance

C=-—+ =4mgg

Q (1 1)—1_ ab

Comment: If we let the distance d = b — a between the spherical shells become very small
compared to a and b, we may write

b—a d~ d

so that dr? p
Ta

CZ&‘OT:EOE

where A = 4ma? ~ 47b? is the area of each of the spherical shells. I.e., the same result as for a
parallel plate capacitor.

8) The forces due to the charges in B and C are equal but with opposite direction and give
zero net contribution. The force from the charge in A points along OD. The vector sum of the
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forces from the two charges at the middle of CD and BD must point along OA. In absolute
value, each of these must be exactly twice as large as the force from the charge in A, since the
distance OA is /2 times the distance from O to the two “midpoints”. In absolute value, the
vector sum of the forces from the two charges at the middle of CD and BD is a factor /2
times bigger than the length of each of them. Hence, this vector sum must be larger than the
force from the charge in A. In conclusion, the total force must point along O A.

9) Opposite charges attract each other, charges of the same type repel each other. In addition, a
charged object will always attract a neutral object because of polarization of the neutral object:
For example, a positively charged object will push positive charges in the neutral object away
and attract the negative ones. The net effect is attraction because of the shorter distance to
the negative charges. (Example: Charge a comb by pulling it through your hair. The neutral
water running in your sink will be attracted to the comb.)

So: Spheres 2 and 3 must both be charged, with charge of the same sign. Sphere 1 may be
neutral or charged. If it is charged, the sign is the opposite of spheres 2 and 3. In any case, it
will be attracted by sphere 2. This is all we can say, so we do not have enough information to
determine what type of charge we have on all three spheres.

10) Newton’s 3. law: If one object acts with a force on another object, the second object also
acts on the first one, with a force of the same size, but opposite in direction.

11) Rather than calculating the field, we follow the hint and check whether any of the given
alternatives reproduce well-known socalled ”asymptotic” limits. For example: The field from
a certain amount of localized charge () in very large distance x must reduce to the field from a
point charge @ in distance z, i.e.,

E(z) —

4rregr?

if x > R. For this particular problem, this is enough, because the expressions in B, C, and D
don’t even approach zero in this limit! (Besides, the expression in D doesn’t have the correct
dimension.) What about A, then, is it correct? Well, if z > R, we have

1
N

Va2 + R? J/1+ R?/x?

12
|

so that E ~ Q/4meqz®. We could also go to the other limit, namely z — 0. In that case, we
should obtain the same as for an infinitely large plane, i.e., 0/2¢p. And only the field in A is
consistent with this:

Q o

_ 7 =
27T€0R2 280

with o = Q/7R?, i.e., charge pr unit area.

Ea



12) Since E(r) = —dV/dr, we must for the linear part of E have E(r) = ar (a = positive
constant), i.e., dV/dr = —ar. Hence, V(r) = b — ar?/2 (b = constant), a parabola with
negative curvature. Only curve 3 is appropriate. We see that the behavior of £ and V' is also
OK for large values of 7 in curve 3, for example, E(r) ~ 1/r? and V(r) ~ 1/r.

13) Only charges inside the Gaussian surface contribute to the net electric flux through it. Field
lines from charges outside will go both in and out through the Gaussian surface, and therefore
do not contribute to net flux.

14) It does not matter if the charge distribution on the metal is no longer uniform: The
electrostatic field E is everywhere zero inside the metal, so the potential V' must be constant
everywhere inside the metal. Do not forget this: In electrostatic equilibrium, a ”connected”
piece of electric conductor is an equipotential.

15) Here, we may use Gauss’ law. We choose a Gaussian surface lying entirely within the
sphere in the middle. Since we are then inside a conductor, we have E = 0 everywhere on the
Gaussian surface, and hence § E - dA = 0. According to Gauss’ law, the net charge inside this
surface is then zero. We may put this Gaussian surface arbitrarily close to the inner surface
of the sphere in the middle. Since the charge on the inner sphere is 2(¢), the charge on the
inner surface of the sphere in the middle must be —2(). The sphere in the middle has total
charge —@Q. Inside the volume of this sphere, there can be no net charge (we proved this in
the lectures, using Gauss’ law). Hence, the rest of the charge, @), must be on the outer surface
of the sphere in the middle. (Based on a similar argument, we may also conclude that on the
outer sphere, we have a charge —( on the inner surface and zero charge on the outer surface.
So, outside all the three spheres, the electric field is ....)

16) E = —VV, i.e., E points in the direction of lower potential, and furthermore, is perpen-
dicular to the equipotential surface.

17) The electric field strength inside the dielectric slab is reduced in comparison with having
only vacuum there. Hence, the potential difference AV between the capacitor plates becomes
smaller. A is therefore incorrect. Since the capacitance is given by C' = Q/AV/, this means that
C becomes larger when AV becomes smaller and @ is held fixed. B is therefore also wrong.
The potential energy stored in the capacitor must have become smaller after we inserted the
dielectric slab. For this conclusion, we may consider the energy pr unit volume in terms of
the electric field, u = £9E?/2, or we might have calculated the work required to charge the
capacitor from zero charge to final charge £@). So, C is also incorrect. We are left with D,
which is correct: The electric field in the air-filled layers is not affected by the dielectric slab.
We have an induced negative charge on the upper surface and an equal amount of positive
charge on the bottom surface of the dielectric slab. In the two layers of air, these two planes of
induced charge give equal, but oppositely directed contributions to the total electric field.

18) We have e.g. E = F/Q and AV = — [ E-dl. Besides, C = Q/AV. So we may write down
several possibilities:
[E] = [F/Q] = [AV/l] = [F/CAV]

Hence, these units are possible:



[E] = N/C = V/m = N/FV.
The unit kg m?/s? C is not correct. (It would have been with m instead of m?.)

19) If we are in the region between the inner sphere and the spherical shell, the net charge
inside a spherical Gaussian surface is 2¢). Hence, the electric field is

2Q

E(r) = 4dreqr?

directed radially outwards. If we are outside the spherical shell, the net charge inside a spherical

Gaussian surface is 2Q) — @Q = @. Hence, the electric field is
Q

Areqr?

E(r)

also here directed radially outwards. Figure 2 is therefore correct. We see that this is also
consistent with the fact that field lines for F start on positive charges and end up on negative
charges (or at infinity): The charge —Q on the spherical shell must distribute itself with —2@Q
on the inner and +@ on the outer surface. (See question 15.) Everywhere inside the two
conductors, we must of course have £ = 0.

Figure 1 would have been correct if the metal shell had not been there at all. Figure 3 would
have been correct if the metal shell had net charge —4@Q (and therefore charge —2@Q on both
the inner and outer surface). Figure 4 would have been correct if the metal shell had net charge
—6@ (and therefore charge —2@) on the inner surface and —4@Q on the outer surface).

20) An infinitely large plane with charge o pr unit area creates an electric field o/2¢,. The
electric force on another plane with charge ) put into this field is therefore F' = QFE = Qo /2¢.
The force pr unit area becomes f = F/A = Qo/2e0A = 02/2¢5. With ¢ = 107° C/m? and
g0 = 8.85-10712 C? /N m?, we have f =100/2 - 8.85 ~ 5.7 N/m?.

Note that we cannot use the total electric field o/ey when we want to find the force on one
plate from the other. The two plates each contribute with o/2¢q to the total field, but any
given one of them does not act on itself with a net force. (Just like you cannot lift yourself by
the hair....!)



