Institutt for fysikk, NTNU
 TFY4155/FY1003 Elektrisitet og magnetisme
 Vår 2005

Solution to \varnothing ving 10

Guidance Thursday March 17 and Friday March 18

Exercise 1

a) This system can be viewed as three resistances connected in series: the two 30 cm long Al wires and the resistance $R=10 \Omega$. The resistance of the two Al wires becomes

$$
R_{A}=\frac{l}{\sigma A}=\cdot \frac{0.60 \mathrm{~m}}{3.54 \cdot 10^{7} \Omega^{-1} \mathrm{~m}^{-1} \cdot 10^{-6} \mathrm{~m}^{2}}=0.017 \Omega
$$

The same current I passes through the whole system. It is

$$
I=\frac{V}{R+R_{A}}=\frac{1.5 \mathrm{~V}}{10.017 \Omega}=0.1497 \mathrm{~A} \simeq 0.15 \mathrm{~A}
$$

according to Ohm's law. Thus, we obtain the voltage drops

$$
V_{R}=R I=10 \Omega \cdot 0.1497 \mathrm{~A}=1.497 \mathrm{~V}
$$

over the resistance R and

$$
V_{A}=R_{A} I=0.017 \Omega \cdot 0.1497 \mathrm{~A}=0.0025 \mathrm{~V}
$$

over the two Al wires together.
b) We found the current I in a) above. The dissipated effect in the resistance R becomes

$$
P=V_{R} I=1.497 \mathrm{~V} \cdot 0.1497 \mathrm{~A}=0.224 \mathrm{~W}
$$

$(0.225 \simeq 0.23 \mathrm{~W}$ if we neglect the resistance of and the voltage drop across the two Al wires $)$
c) Here, we must first find the density of free electrons n. Next, we may use $I=j \cdot A=\operatorname{nev} A$ in order to calculate the mean drift velocity v.
In Al , we have a mass density $2700 \mathrm{~kg} \mathrm{pr} \mathrm{m}{ }^{3}$. This corresponds to $2700 / 0.02698 \mathrm{~mol}=100074$ $\mathrm{mol}=100074 \cdot 6.02 \cdot 10^{23}$ atomer $=6.02 \cdot 10^{28}$ atoms, and hence equally many free electrons, assuming one free electron pr Al atom. Mean drift velocity becomes

$$
v=\frac{I}{n e A}=\frac{0.15}{6.02 \cdot 10^{28} \cdot 1.6 \cdot 10^{-19} \cdot 10^{-6}}=1.56 \cdot 10^{-5} \mathrm{~m} / \mathrm{s}=15.6 \mu \mathrm{~m} / \mathrm{s}
$$

Average thermal velocity for the electrons may be estimated by setting the kinetic energy equal to the thermal energy:

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\frac{3}{2} k_{B} T \\
\Rightarrow v & =\sqrt{\frac{3 k_{B} T}{m}} \simeq 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Here, $k_{B}=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ is Boltzmann's constant. We see that the mean drift velocity is roughly 10 orders of magnitude smaller than the average thermal velocity. In other words, it takes several hours for a given electron to get from one end to the other in our system!

Exercise 2

a) If 700 W corresponds to 90% of the total effect, the total effect becomes $700 / 0.9 \mathrm{~W}=$ 778 W . This effect is supposed to be delivered during a period of 0.005 s . Then, an energy (700/0.9) $\cdot 0.005 \mathrm{~J}=3.89 \mathrm{~J}$ must be stored in the capacitor.
b) We have in the lectures derived an expression for the work required to charge a capacitor with capacitance C. Let us briefly remind ourselves: In order to increase the charge on the capacitor from q to $q+d q$, a work $d W=v(q) d q$ is required. Here, $v(q)$ is the voltage across the capacitor when the charge is q. Per definition, we have $C=q / v$, so that $d W=C^{-1} q d q$ and the total work must be $W=Q^{2} / 2 C$, i.e., in order to increase the charge from 0 to Q. With $Q=V C$, this can also be written as $W=C V^{2} / 2$. This means that the voltage required to store an energy 3.89 J in a capacitor with capacitance 0.80 mF is

$$
V=\sqrt{\frac{2 W}{C}}=\sqrt{\frac{2 \cdot 3.89}{0.80 \cdot 10^{-3}}}=98.6 \mathrm{~V}
$$

Exercise 3

Let us imagine we divide the conductor into cylindrical "tubes" with inner radius r, outer radius $r+d r$, and therefore cross sections with area

$$
d A=2 \pi r d r
$$

The current in such a tube is

$$
d I=j \cdot d A=j_{0}\left(1-\frac{r^{2}}{R^{2}}\right) \cdot 2 \pi r d r
$$

The total current I is found by integrating $d I$ over the full cross section of the conductor, i.e., by letting r vary from 0 to R :

$$
\begin{aligned}
I & =\int d I \\
& =\int_{0}^{R} j_{0}\left(1-\frac{r^{2}}{R^{2}}\right) \cdot 2 \pi r d r \\
& =\left.2 \pi j_{0}\right|_{0} ^{R}\left(\frac{1}{2} r^{2}-\frac{r^{4}}{4 R^{2}}\right) \\
& =2 \pi j_{0}\left(\frac{1}{2} R^{2}-\frac{1}{4} R^{2}\right) \\
& =\frac{1}{2} j_{0} \pi R^{2}
\end{aligned}
$$

Exercise 4

1. The full region between $r=a$ and $r=b$ may be viewed as many resistances $d R$ connected in series, where each resistor is a thin spherical shell with radius r and thickness $d r$:

$$
d R=\frac{\rho d r}{4 \pi r^{2}}
$$

The total resistance is found by summing up all these individual resistances, i.e., by integrating from $r=a$ to $r=b$:

$$
\begin{aligned}
R & =\int d R \\
& =\int_{a}^{b} \frac{\rho d r}{4 \pi r^{2}} \\
& =\left.\frac{\rho}{4 \pi}\right|_{a} ^{b}\left(-\frac{1}{r}\right) \\
& =\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

2. The given expression for the current I shows that we may here use Gauss' law for the electric field to determine I :

$$
I=\frac{1}{\rho} \cdot \frac{Q}{\varepsilon_{0}}
$$

We must assume that the charge entering into the inner conductor immediately distributes itself over the spherical surface at $r=a$ before is starts on its way through the material between $r=a$ and $r=b$.
The potential difference between the inner and outer conducting shell is easily determined, since we know the electric field \boldsymbol{E} :

$$
\begin{aligned}
\Delta V & =V_{a}-V_{b} \\
& =-\int_{b}^{a} E(r) d r \\
& =\left.\frac{Q}{4 \pi \varepsilon_{0}}\right|_{b} ^{a} \frac{1}{r} \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

From these expressions, it follows that the resistance is

$$
R=\frac{\Delta V}{I}=\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

