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Exercise 1

In the first experiment, B = 0. Then, Newton’s second law is:

F = ma = qE

⇒ dv

dt
=

q

m
E

⇒ v(t) = v(0) +
q

m
Et =

dr

dt

⇒ r(t) = r(0) + v(0)t +
q

2m
Et2

Here, it is natural to choose t = 0 the moment the particle enters the region with E 6= 0, and
furthermore, to choose the origin in this position:

r(0) = (x0, y0) = (0, 0)

Here, the velocity is
v(0) = v x̂

when we orient the x axis towards the right. The y axis is oriented upwards, so that

E = −E ŷ

(i.e., with E > 0) The particle trajectory thus becomes a parabola, just like when we throw a
mass in the field of gravity. The velocity in the x direction is not affected by the electric field,
so

x(t) = vt

whereas the particle obtains a constant acceleration in the y direction, i.e., the displacement in
the y direction, as a function of t, must be determined by

y(t) = − q

2m
Et2

The particle will leave the region where E 6= 0 at the moment

tL =
x(tL)

v
=

L

v

The vertical position is then

y(tL) = − q

2m
E

L2

v2
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Already, we may conclude that q < 0 if y(tL) > 0.
The distance from x = L to x = L + D is then traveled without influence from any kind of
forces, and with a direction relative to the x axis in terms of the angle α, where

tanα =
vy(tL)

vx(tL)
=

− q
m

E L
v

v
= −qEL

mv2

Besides, we must have

tan α =
y − y(tL)

D
where y is where the electron hits the detector, at x = L + D.

The experiment is then repeated with the same E-field, but now we turn on a magnetic field B
directed into the plane, so that the particles are no longer deflected by the fields. This implies
that the electric force (upwards) is exactly balanced by the magnetic force (downwards). In
other words:

F = qE + qv × B = 0

⇒ E = vB

⇒ 1

v
=

B

E

Hence:

y − y(tL)

D
= −qEL

mv2
= −qEL

m
· B2

E2

⇒ y +
q

2m
EL2

B2

E2
= −qEL

m
· B2

E2
D

⇒ yE = − q

m
· B2

(

DL +
1

2
L2

)

⇒ q

m
= − yE

B2

(

DL + 1

2
L2

)

I.e.,

a =
E

B2 (DL + L2/2)

Exercise 2

a) The speed of the ions when they enter the region with magnetic field is determined by the
change in potential energy, going through the voltage difference V , being equal to the change
in the kinetic energy of the ions:

eV =
1

2
mv2 ⇒ v =

√

2eV

m

The centripetal acceleration inside the magnetic field is

a =
v2

r
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so that Newton’s 2. law gives

F = m
v2

r
= evB ⇒ r =

mv

eB

Radius for the resulting circular path for a particle with mass m becomes

r =
1

B

√

2V m

e

i.e., proportional with
√

m. Radii and masses for the different isotopes must be related as
follows:

ri

rj
=

√

mi

mj

where i, j = 79 or 81.
If the points where the ions hit the photographic plate are supposed to be separated by a
distance of (at least) a = 1.0 cm, the diameter of the two circular paths must differ by 1.0 cm.
We obtain

a = 1.0 cm = 2(r81 − r79) = 2r79

(√

m81

m79

− 1

)

This gives

r79 =
a

2

(√

m81

m79

− 1

)

−1

= 0.5 cm ·




√

81

79
− 1





−1

' 39.7 cm

and
r81 = r79 +

a

2
' 40.2 cm

Now, we can determine how strong magnetic field that can be used to achieve these radii:

B =
1

r81

√

2V m81

e
=

1

0.402
·
√

2 · 400 · 81 · 1.67 · 10−27

1.6 · 10−19
= 0.065 T

This represents the upper limit of B: A stronger magnetic field will reduce both r79 and r81,
but r81 the most, so that the ”hit points” move closer to each other. However, at the same time
the diameter d81 = 2r81 must not be larger than the physical limit of the instrument, given by
L = 250cm. That corresponds to a minimum value of the magnetic field strength:

Bmin =
1

L/2

√

2V m81

e
=

1

1.25
·
√

2 · 400 · 81 · 1.67 · 10−27

1.6 · 10−19
= 0.021 T

In other words, we may use a magnetic field between 21 and 65 mT.

Exercise 3

a) In this exercise, we may argue somewhat along the same lines as we did when we calculated
the electric field on the symmetry axis of a uniformly charged ring. In that case, we looked at the
contributions to the total field from diametrically opposite charge elements dq and convinced
ourselves that the total electric field had to be directed along the symmetry axis.
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Here, we may e.g. look at the two current elements lying exactly on the positive and the
negative y axis, respectively, and determine the direction of the contribution to the magnetic
field on the z axis from these two. Let us look at positive values of z first. (See figure below.)
The ”current element” I dl which crosses the positive y axis has its direction along the negative
x axis. The cross product of this vector with r from the current element to the actual position
on the positive z axis becomes a vector lying in the yz plane, with positive y and z components.
The diametrically opposite current element, i.e., the one crossing the negative y axis, is directed
along the positive x axis. The cross product of this vector with r from the current element
to the actual position on the positive z axis becomes a vector which also lies in the yz plane,
but this vector will have a negative y component and positive z component. From symmetry
reasons, these two contributions to B must be equal in absolute value, have equal z components
(with the same sign), and have equal y components, but with the opposite sign. Thus, the sum
of these two contributions must point along the positive z axis.
In this way, we could argue for any pair of diametrically opposite current elements around
the ring. They will all have an equal z component with the same sign, and equal x and y
components with opposite sign.
Conclusion: B on the positive z axis is directed along the positive z axis.

b) In a), we convinced ourselves that B(z) is directed along the positive z axis if z > 0. What
about z < 0?
Looking again at the figure below, we see that the current element that crosses the positive y
axis will give a contribution to B(z) on the negative z axis which lies in the yz plane, with
positive z component and negative y component. For the current element crossing the negative
y axis, we find a contribution with positive z component and positive y component. Altogether,
a magnetic field directed along the positive z axis.
Conclusion: The magnetic field points along the postive z axis everywhere on the z axis.

c) The vectors I dl and r̂ are perpendicular to each other. Thus

|I dl × r̂| = IR dφ · 1

since a line element dl along a circle equals the radius R multiplied with the ”angle element”
dφ:

dϕR

The direction of dB must be as shown in the figure:
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From this figure we notice that

dBz

dB
= sin θ =

R

r
=

R√
z2 + R2

and this is precisely the z component of the magnetic field that we are looking for. The absolute
value of dB becomes

dB =
µ0

4π
· IR dφ

z2 + R2

so that

dBz = dB sin θ =
µ0

4π
· IR dφ

z2 + R2
· R√

z2 + R2
=

µ0IR2 dφ

4π (z2 + R2)3/2

The total z component, and therefore the total magnetic field, is obtained by integrating the
contributions from all the current elements around the ring, i.e., by integrating this expression
over the angle φ from 0 to 2π:

B(z) =
∫

dBz =
µ0IR2

4π (z2 + R2)3/2

∫

2π

0

dφ =
µ0IR2

2 (z2 + R2)3/2

which is what we were supposed to show.

d) Far away form the current loop, we may write

z2 + R2 ' z2

Thus, the magnetic field is approximately

B(z) ' µ0IR2

2z3

The magnetic dipole moment of the current loop is

m = IA = I · πR2

so we may write this magnetic field as

B(z) =
µ0m

2πz3
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It is well worth comparing this result with the electric field on the axis of an electric dipole, in
large distance z from the dipole. This is something we already did in øving 5, where we found

E(z) =
p

2πε0z3

Here, p is the electric dipole moment of the dipole. In other words, exactly the same result,
with m instead of p, and µ0 instead of 1/ε0.
We will find more analogies between electrostatics and magnetostatics as we move along!
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