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Electric current
[FGT 26.1; YF 25.1; TM 25.1; AF 24.1, 24.2; LHL 21.1; DJG 5.1.3]

Electric current = amount of (positive) charge that passes through a cross section of a conductor
pr unit time.

In a metal, the mobile charges are electrons, with charge —e. Then the particle current and the
electric current go in opposite direction.

With charge AQ passing a cross section A in time At:

_ AQ ato dQ

I =
At dt

Unit for current: [I] = [Q/t] = C/s = A (ampere)
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With n = AN/AV mobile charges pr unit volume, each with mean drift velocity v and charge
q:
AQ = gAN = ngAV = ngAzA
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Current density = current pr unit area:
I
=
Hence:
J =nqu

Both current density j and drift velocity v are vectors:

J = nqu

If we also consider the cross section A as a vector, then I becomes a scalar quantity: stgrrelse:
I=35-A
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The current I then has direction only relative to the conducting wire (positive or negative).

Generalization, if 7 is not constant over the cross section of the conductor:

I:/Sj-dA
;J dA

Ohm’s ”law”
[FGT 26.3; YF 25.2,25.3; TM 25.2; AF 24.3, LHL 21.2, DJG 7.1.1]

We need a driving force F' to obtain a current through the conductor. If
I~F~E~V

(i.e.: if I is proportional to the driving force, and hence proportional to the electric field, and
hence also proportional to the potential difference V') then we have so-called linear response:

1
I= EV
=V =RI
which is Ohm’s law.
Unit for resistance: [R| = [V/I] = V/A = Q (ohm)

Ohmic materials: Obey Ohm’s law for large variations in /.
Non-ohmic materials: Considerable deviations from linear relation between I and V.

Circuit symbol for resistor:

Electric conductivity
[FGT 26.2,26.3; YF 25.2,25.3; TM 25.2; AF 24.4, LHL 21.2, DJG 7.1.1]



Random movement (diffusion) of mobile charges through the conductor, plus a net drift due to
the field E

E

— =V

K kolligoner med gitteret og
andre elektroner

Mean drift velocity along —E: v
Particle velocity associated with the temperature in the conductor: vy ~ % > v

Comment: A correct quantum mechanical description of the electrons in a metal will in fact result
in an even larger particle velocity. This is because electrons are a type of elementary particles called
fermions that obey the so-called Pauli principle, saying that it is not possible to have more then a
single fermion in each allowed ”state”. This forces electrons into states with higher energy than what
they would have had if they were classical particles. You can learn more about this in courses on
quantum mechanics and solid state physics and so on!

For ohmic material: v ~ E

This gives a linear relation between current density and electric field:
j=0FE
which defines the conductivity of the material, 0. This is also Ohm’s law.

A conducting wire of length [, (constant) cross section A and conductivity o has resistance

R:—Z

o

Proof: v X [

Here, we have assumed that E is constant in the whole conductor (which is OK, see for ex-
ample Griffiths, Example 7.3), and therefore equal to the voltage drop across the length of the
conductor, V', divided by the length [. The final equality in the equation above is simply Ohm’s
law, i.e., the definition of R.

We may now introduce conductance:



and resistivity:

o and p are material constants
R and G also depend on the size and shape of the conductor

Units:

[G]=Q7!

o] =[l/RA]=Q ' m™!
[p] =Qm

The temperature dependence of p
[FGT 26.3; YF 25.2; TM 25.2; LHL 21.2]

Increase in temperature 7" results in stronger lattice vibrations and thereby more frequent
collisions between the electrons and the lattice. This results in a reduced drift velocity v and
a reduced conductivity o, i.e., an increased resistivity p.

Empirically, we have, over some temperature interval, for metals:

p(T) = po[l + (T — To)]

Here, T is a chosen reference temperature, e.g., 300K, py = p(7p) is the measured resistivity
at temperature Ty, and « is the measured temperature coefficient, i.e., the slope of p(T)/po
plotted as a function of 7.

Electric effect
[FGT 26.7; YF 25.5; TM 25.3; AF 24.5, LHL 22.2, DJG 7.1]

Change in potential energy, AU, for a charge AQ) that goes through a voltage drop V:
AU =AQ -V

Energy conservation:

Without collisions: We would get acceleration of the mobile charges, and thereby increased
kinetic energy.

With collision (which we actually have!), i.e., resistance R: AU is "lost” as heat in the resistor.

Lost effect = lost energy pr unit time:

If we have an ohmic material (i.e. V = RI):
V2
P=RI’=—
R
Unit for effect:
u, J
[PI=[]==W (watt)
S



Several resistors coupled together
[FGT 26.4; YF 26.1; TM 25.4; AF 24.6, LHL 21.3]

N resistors R;, © = 1,.., N connected in series:

N resistors R;, 1 = 1,.., N connected in parallel:

R &R
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From ¢ving 9, several capacitors coupled together
[FGT 25.4; YF 24.2; TM 24.4; AF Ex. 25.8, LHL 20.2]:

N capacitors C;, ©+ = 1, .., N connected in series:

1 X
c i=1 Ci
N capacitors C;, 1 = 1,.., N connected in parallel:
N
C = Z C;
i=1

In these expressions, R and C represent, respectively, the equivalent resistance and equivalent
capacitance if we replace all the elements connected in series or parallel with a single resistor
or capacitor.

A couple of comments!

e Didn’t we agree that inside an electric conductor, the electric field is zero? Yes, but
then we had electrostatic equilibrium! If a current runs through the conductor, we have
no longer electrostatic equilibrium. And if we don’t have electrostatic equilibrium, the
electric field doesn’t have to be zero any more.

e In the lectures, I stated, without proof, that if we have a (straight) wire with constant
cross section, carrying a stationary (i.e., time independent) electric current I, then the
electric field E is uniform everywhere inside the conductor. I won’t prove this here. (But
see example 7.3 in Griffiths, if you are interested.) However, consider the consequences
of having a uniform electric field inside such a conductor. This means that there can be
no net charge anywhere inside the conductor, just as we found earlier (in electrostatic
equilibrium). A uniform electric field means that no matter what kind of volume element



we choose, big or small, the same amount of electric flux passes in and out of the volume
element, and hence, by Gauss’ law, the net charge inside is zero. Conclusion: The poten-
tial difference across the length of the conductor, and the uniform electric field inside the
conductor, are created by charges that must be on the surface of the conductor. Exactly
how these charges distribute themselves, well that’s not so easy to tell.

Different materials have very different values of the resistivity. Examples: Silver has
p = 1.59-107% while diamond has p = 2.7 (both in the unit 2m and at room temperature).
Various types of glass have typically resisitivity values in the range 10'° — 10'%. Earlier,
we treated insulators like glass as materials with no mobile charges, and therefore zero
conductivity, i.e., infinite resistivity. So, this is only almost true! At ”finite” temperature
(i.e., not zero temperature), there will be a few electrons that are free to move around
and may contribute to electric current if we apply a voltage. But the conductivity of
glass is really smalll The ratio of the resistivity of glass and silver can be as high as
10%2. A resistor in an electric circuit is typically made of a material with considerably
higher resistivity than the metal in the connecting wires. We may therefore, with good
approximation, consider the metallic connecting wires as equipotentials, i.e., with zero
voltage drop across them, and thereby also zero electric field inside them. Since we have
the relation 3 = o E, we see that zero electric field together with a non-zero current density
must imply 0 — co. Then we say that we have a perfect conductor. And correspondingly,
a ”perfect insulator” means a material with infinite resistivity, or ¢ = 0. Then we see
that 7 = 0 always, even if £ # 0.



