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DC circuits
[FGT 27; YF 26; TM 25; AF 24.7; LHL 22]

Eksempel: lommelykt
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Voltage source (e.g., chemical battery, solar cell etc.):

"Delivers electromotive force (emf), i.e., makes sure that we always have a constant potential
difference £ between the two ”"poles” 4+ and -.

Voltage around the circuit in the figure above (AV is change in electric potential):

spenning
(potensial)

posision

a—b: AV ~ 0 (metal wire, good conductor, R,, ~ 0, E ~ 0)

b — c¢: AV = —RI (resistor, bad conductor, R > R,,, potential energy is lost as heat because
of collisions, E # 0)

c—d: AV ~0 (asa—b)

d — a: AV = & = RI (receives charge carriers with low potential energy, delivers charge
carriers with high potential energy.)



A real source always has a (usually small) inner resistance R;:
I
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When a real voltage source is connected to an electric circuit, the inner resistance R; comes in
addition to the circuit resistance R. We then have a power loss both in the source (P; = R;1?)
and in the rest of the circuit (Pp = RI?).

An ideal source has R; = 0.

Kirchhoff’s rules
[FGT 27.2, 27.3; YF 26.2; TM 25.5; AF 24.8; LHL 22.3]

Calculations on electric circuits are done with the help of Kirchhoff’s rules.

Rule 1 (Current rule): Because of charge conservation,
Z Ij - O
J

in all junctions in a circuit.
If not, we would obtain charge accumulation in the junction.
Sign convention: Positive I when it goes out of the junction.

Rule 2 (Voltage rule): Because of energy conservation,
> (voltage changes) =0

for all closed loops in a circuit.

If not, we would not have a uniquely determined potential energy for the charge carriers at a
given place in the circuit.

Sign convention: Positive contribution means voltage increase.
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Kirchhoft’s rules yields a sufficient number of independent equations to determine the unknown
quantities, e.g., the currents /; in the various branches of the circuit.

RC circuits
[FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4]

The space between the two conductors in a capacitor is filled with an insulator, and through
an (ideal) insulator runs zero electric current.
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isolator => 1=0

However, we may have a time dependent current I(t) into and out of the conductors of the
capacitor (the plates, if we have a parallel plate capacitor).
Hence, we obtain a time dependent charge Q(t) on the capacitor plates.

Are we allowed to use Kirchhoft’s rules to analyze circuits with time dependent I(¢), V(t), Q(t)?
Yes: For "slowly” varying currents, where slow means in comparison to how fast a change at
one place in the circuit is "detected” in the rest of the circuit. Since electromagnetic signals
(waves) propagate with the speed of light, ¢, this is in practice usually no problem.

Example 1: Charging of capacitor in RC circuit.
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The voltage source £ is connected at time ¢t = 0. At that instant, we have zero charge on the
capacitor, Q(0) = 0.



Kirchhoft’s voltage rule =
E—Voe—-Vr=0

Voltage drop across C":

Ve=Q/C
Voltage drop across R:
Ve =RI = R@
T
Yields 1. order differential equation for the charge Q:
dQ 1
R—+=Q=¢
i "o

which has solution

Q) = £C (1 - e7/H0)
Here, we have used the initial condition Q(0) = 0.

The current is 0 c
I _ % _ ~ —t/RC
O = =&

Time constant for the charging process: 7 = RC
The value of 7 provides a time scale for how long time it takes to charge the capacitor to its
maximum charge

Qt — 00) = EC

Example 2: Discharge of capacitor in RC circuit.
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We assume that the capacitor has been charged with a voltage source £, and that it is fully
charged. Hence, the initial condition now is Q(t = 0) = EC.
Kirchhoft’s voltage rule =

—Vr—Ve=0



Gives, as above, 1. order differential equation for the charge Q:

aQ 1
g =0

which has solution
Q(t) = ECe™"RC

Here, we have used Q(0) = £C.
The current is

~dt R

We see from the figure that we chose the ”wrong” direction for the current I: Positive charge will
flow from the positively charged plate, and therefore give a positive current counterclockwise.
However, this is taken into account since the calculated current came out with a negative sign.

I(t) = dQ _ —Ee_t/RC

Note that is we had chosen the opposite direction for I in the figure, we could no longer write
I = dQ/dt, but rather I = —dQ/dt, since a positive current in that case would correspond to
a reduction in the charge on the capacitor. In other words: d@/dt will then be negative for
positive I, and we must write I = —dQ/dt to have the same sign on both sides of the equation.

I recommend to choose the direction of I into the plate with charge (), as done above. Then
we may stick to the relation I = dQ/dt, i.e., positive I corresponds to a positive change in the
charge ). The initial condition for each particular problem will make sure that the sign of I is
correct in the end!

Next week:

Magnetic interactions! We start (in the ”ekstratimen” on Tuesday) by showing, or at least
indicating, that the magnetic field and magnetic forces are a direct consequence of electrostatics
(i.e., that charges at rest influence each other with Coulomb forces) and Einstein’s special theory
of relativity. In other words, we may conclude that magnetism is a relativistic effect.

Next, we will consider the movement of a charged particle in a magnetic field, and we will also
introduce the Biot-Savart law, which gives us the recipe for calculating the magnetic field B
when we know the electric current(s) in our system. The Biot—Savart law is to magnetostatics
what Coulomb’s law is to electrostatics, how to calculate the electric field E when we know the
electric charges in our system. And, if we know the fields E and B, we may proceed to evalute
the force on a given charge ¢ with velocity wv:

F=gFE+quvxB

which is the famous Lorentz force.



