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Magnetic flux and Gauss’ law for B

[FGT 29.2; YF 27.3; TM 28.1, 27.3; AF 26.3; LHL 23.7; DJG 5.3]

Magnetic flux φB through surface S:

φB =
∫

S
B · dA

The magnetic field strength B is proportional to the number of magnetic field lines pr unit area.
Hence, the magnetic flux φB is proportional to the number of field lines through the surface
(Cf. electric flux!)

Since magnetic field lines are always closed, we obtain Gauss’ law for the magnetic field:

∮
B · dA = 0

for closed surface. This expresses the face that there are no magnetic monopoles.

Summary, electrostatics and magnetostatics: Maxwell’s equations

Gauss’ law for electrostatic field: ∮
E · dA = qin/ε0

Electrostatic field is conservative: ∮
E · dl = 0

Gauss’ law for the magnetic field: ∮
B · dA = 0

Ampere’s law: ∮
B · dl = µ0Iin

With given ”sources”, i.e., static charges and stationary currents, these equations provide the
recipe for calculating E and B.
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The Lorentz force,
F = qE + qv × B

then determines how a charge q with velocity v will move in the fields E and B.

Magnetism
[FGT 31.1 - 31.4; YF 28.8; TM 27.5; AF 26.3; LHL 26.1 - 26.5; DJG 6.4]

• Paramagnetism: In material with atomic magnetic dipole moments m 6= 0, m is aligned
along the external field B, just like an electric dipole is aligned along an external electric
field E.

• Diamagnetism: The external field B influences the orbital movement of the electron so
that we get an induced change ∆m in the magnetic dipole moment directed opposite to
B. We have such a diamagnetic response in all atoms, but since it is weak, it is typically
observed only in materials with zero permanent atomic magnetic dipole moment.

• Ferromagnetism: Now we have interacting magnetic dipole moments on neighbouring
atoms, so that it becomes energetically favorable with a certain orientation of the various
m. Ferromagnet: Parallel m favored. Antiferromagnet: Antiparallel m favored.

Magnetic domains: Inside a ferromagnetic material, we may have regions that are small com-
pared to a typical macroscopic length scale but large compared to an atomic length scale, and
in which all the atoms have their magnetic dipole moment pointing in the same direction. One
such domain will therefore be a small magnet. However, if our macroscopic piece of ferro-
magnetic material consists of many such domains, where different domains have the magnetic
dipoles pointing in different directions, the surrounding magnetic field will be essentially zero,
i.e., our material is not a magnet! A steel knife is an example. On the other hand, in a bar
magnet we have (essentially) one magnetic domain where all the dipoles point in the same
direction. Hence, we obtain a considerable magnetic field in the space around the magnet, i.e.,
we do have a magnet!

Magnetic hysteresis: When we put a ferromagnet in an external magnetic field B0, it will
be energetically favored to have the magnetic dipoles pointing in the same direction as the
external field. So, domains with m pointing along B0 will grow and domains with m in other
directions will become smaller. The magnetization in the ferromagnet (i.e.: the magnetic dipole
moment pr unit volume, se below) will therefore increase from M = 0 to a maximum value
M = Ms = the saturation magnetization, where all the atomic m point in the same direction
as B0. This reorientation of magnetic dipoles is not a completely reversible process, i.e., it
is partly irreversible. That means that if we turn off the external field, the ferromagnet will
not end up in the same state as it started in (with M = 0), but in a different state, with a
certain ”rest magnetization” Mr. We must apply an external field in the opposite direction to
come back to the state with M = 0. With a sufficiently strong external field in the opposite
direction, we will again have all the dipoles pointing along B0. Then we have M = −Ms. And
if we turn off the external field again, M will not become zero, but rather −Mr. And in this
way we may continue. If we plot M versus the external field B0, we get a curve like this:
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The shape of the hysteresis curve will tell you whether you have a so called ”hard magnet” (i.e.
a permanent magnet) or a ”soft magnet” (for example a piece of steel):
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Figure A represents the steel: We have essentially zero magnetization if the external field is
zero. If we turn on the external field, the magnetization will grow linearly, but of course ”flatten
out” when we approach the saturation magnetization. Turning off the external field brings us
back to M ' 0, in agreement with our experience: A piece of steel does not remain magnetic
if we turn off the external field. Figure B represents the permanent magnet: We have a large
magnetization even with zero external field, and even if we put the magnet in an external field,
the magnetization remains essentially unchanged. (But: With a very strong external field, we
may in fact reverse the direction of the magnetization, i.e., we may interchange the north and
the south pole!)
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Magnetization and bound surface current
[FGT 31.1; YF 28.8; TM 27.5; AF 26.5; LHL 26.1; DJG 6.3]

Magnetization M is, by definition, magnetic dipole moment pr unit volume:

M =
∆m

∆V
if we have a net magnetic dipole moment ∆m in the volume ∆V .

Magnetization corresponds to atomic current loops with the current in the same direction. All
inner currents will therefore cancel, so the net effect of the magnetization in an object is a
surface current. Compare this with polarization in a dielectric, where the net effect of electric
polarization is a surface charge.
In absolute value, we have

M = im

where im is the induced surface current pr unit length (i.e.: where ”length” is in the direction
of the vector M).
In vector form, we may write

im = M × n̂

where n̂ is a unit vector perpendicular to the surface in which im is running, and also perpen-
dicular to M .

The H field
[FGT 31.1; YF 28.8; TM 27.5; AF 26.6; LHL 26.1; DJG 6.3]

Definition:

H =
1

µ0

B − M

I.e.:
B = µ0H + µ0M

For infinitely long solenoid filled with magnetizable material, we showed that

H = nIf

where n is the number of turns pr unit length on the solenoid and If is the ”free” current in
the wire that makes up the solenoid. In other words: In the way the H field has been defined,
it is directly given in terms of the free, ”external” current If . The total magnetic field B is
determined by the total current, i.e., the sum of the free current If and the bound magnetization
current Im (pr turn, so that the magnetization current pr unit length becomes nIm).

Remember: We had a Gauss’ law for the electric displacement D, expressed in terms of the
free charge. Now, we have Ampere’s law for H expressed in terms of the free current:∮

H · dl = I in

fri

In other words: The line integral of H around a closed loop equals the net free current (i.e., all
current that is not associated with the magnetization) I in

free
that is enclosed by the closed curve.

Next week: Magnetic susceptibility and permeability. Electrodynamics: Faraday’s law of in-
duction. Lenz’ law. Induced electric field.
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