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The missing wave momentum mystery
David R. Rowland and Colin Pask
School of Mathematics and Statistics, University College, The University of New South Wales,
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~Received 9 July 1998; accepted 18 September 1998!

The usual suggestion for the longitudinally propagating momentum carried by a transverse wave on
a string is shown to lead to paradoxes. Numerical simulations provide clues for resolving these
paradoxes. The usual formula for wave momentum should be changed by a factor of 2 and the
involvement of the cogenerated longitudinal waves is shown to be of crucial importance. ©1999

American Association of Physics Teachers.
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I. INTRODUCTION

This paper deals with two key elements in physics. Fi
the conservation of energy and momentum principle
probably our two most important principles for understan
ing and analysing physical phenomena. Second, the prop
tion of waves along a stretched string—the canoni
example used when studying continuum systems and w
theory.

First recall that the special theory of relativity tells us th
energy has associated with it a relativistic mass, and
propagating energy, be it particle or wave, has associ
with it a relativistic momentum.1 The classic example of a
wave carrying momentum is of course the electromagn
field, even though the wave itself is made up of zero r
mass particles. The question as to whether all forms
propagating energy carrynonrelativisticmomentum though,
is not so straightforward, however, with Pierce2 and Juenker3

for example warning the reader to be wary. In fact, Rayle
showed in 1905 that in fluids of certain hypothetic
pressure–density behavior, a wave might carry zero or e
negative momentum.4 It is also well known in solid state
physics, that while a phonon in a crystal might carry t
pseudomomentum \k, it carries no real physica
momentum.5–9

Transverse waves travelling down a taut string are a w
studied phenomenon,2,3,10–16with the first full analytic solu-
tion of the vibrating string being given by Lagrange back
1759. Consequently, one might expect that the questio
what actual momentum, if any, such waves carry in th
direction of motion would have been satisfactorily answer
We show in this paper, however, that previously presen
answers to this question lead to paradoxes and so must e
be incorrect, or at least incomplete. We resolve these p
doxes using numerical simulations as a guide to the de
opment of a complete and fully self-consistent theory.

The paper is arranged as follows. In Secs. II and III
describe our basic stretched-string model and discuss the
evant definitions of energy and momentum. Then in Sec.
we show that the standard model and definitions lead t
mystery expressed as paradoxes arising when wave re
tions and tension in the string are analyzed. In Sec. V,
examination of a conservation principle and its origins p
vides a partial resolution to the first paradox. We then pa
for an important aside—the questions we raise are re
quite general and we discuss longitudinal waves in a rod
an example. Using numerical simulations as a guide,
paradoxes are resolved in Sec. VII and corrections to s
378 Am. J. Phys.67 ~5!, May 1999
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dard presentations of wave theory are presented. This is
lowed by some concluding remarks and appendices cont
ing a few more technical details.

Before we proceed, we should also mention that we w
led to consider this problem from our research into cons
vation laws for modal interactions in multimoded nonline
optical waveguides.17,18 Conservation of momentum woul
be expected to give one such conservation law for such p
lems. The topic of electromagnetic momentum in mate
media, however, is a difficult one fraught wit
controversy.9,19,20To clarify some of the issues, we decide
to follow Shockley’s advice of ‘‘try simplest cases,’’21 me-
chanical oscillations on strings or in rods being presuma
simpler models in which to investigate the physics of wa
momentum.

II. PHYSICAL MODEL

We take as our physical model the standard id
string10,11 which is assumed to be perfectly flexible and li
early elastic. By perfectly flexible it is meant that the strin
has no flexural rigidity and so the only restoring force acti
on string elements is a tensile force acting everywhere
gential to the local string direction. Linear elasticity, on t
other hand, implies that the tensile force is assumed to
pend linearly on the amount the string is stretched from
undeformed length.10

With the above assumptions, we can model our string a
linear chain of point masses joined by ideal~massless and
Hookean! springs, which are stretched from their relaxed
unstressed lengtha ~see Fig. 1!. The equations of motion for
the massmj are thus

mjẍj52kS 12
a

l j , j 21
D ~xj2xj 21!1kS 12

a

l j , j 11
D

3~xj 112xj !, ~1a!

mj ÿ j52kS 12
a

l j , j 21
D ~yj2yj 21!1kS 12

a

l j , j 11
D

3~yj 112yj !, ~1b!

l j , j 615@~xj 612xj !
21~yj 612yj !

2#1/2, ~1c!

wherek is the spring constant of each of the springs;xj is the
longitudinal andyj the transverse coordinate of the massmj ;
and l j , j 61 is the distance between the massesmj andmj 61 ,
respectively. It is important to note that when no waves
present, each spring has a lengthl greater than its relaxed
length a so that a string under tension is modelled.~This
378© 1999 American Association of Physics Teachers
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allows longitudinal waves to propagate in a flexible solid li
a string—longitudinal waves in this case being waves
changes in local tension—because the separation betw
masses never falls belowa.!

Taking the usual continuum limit with these assumptio
and to lowest order,10,22 ~see Appendix B! transverse wave
motion on the string is determined by the linear wave eq
tion

r0

]2h

]t2 5t0

]2h

]x2 , ~2!

whereh(x,t)[y(x,t) gives the transverse displacement
the infinitesimal piece of string at positionx as a function of
time t, r0 is the equilibrium linear mass density~mass per
unit length! of the string, andt0 its undisturbed tension
Equation ~2! is the usual textbook equation and the wa
velocity is given by

cT5At0

r0
, ~3!

where the subscript T refers to ‘‘transverse.’’ The discre
and continuum models are linked through the parame
r05m/ l and t05k( l 2a). Note also that the derivation o
Eq. ~2! requires thatu]h/]xu!1.

III. ENERGY AND MOMENTUM CARRIED BY THE
WAVE

In this section, we present the standard expressions for
energy and momentum densities carried by transverse w
on a string. In Sec. IV, we show that the expression for wa
momentum density leads to paradoxes and so must be in
rect ~at least in its interpretation!.

Kinetic and potential energy is carried by the wave, w
the kinetic energy part being due to the motion of mass e
mentsdm5r0dx and the potential energy part being a res
of the work done in stretching the string against the~as-
sumed constant! tension force. The total energy density~en-
ergy per unit length! e carried by the wave is readily show
to be10

e5
1

2
r0S ]h

]t D 2

1
1

2
t0S ]h

]x D 2

~4!

to lowest order. In the discrete model, energy is just the s
of the classical dynamics kinetic and potential energies
all particles and springs.

Fig. 1. Schematic of our model of an ideal string: a lattice of point mas
joined by massless, linearly elastic springs with spring constantsk. As a
wave passes, the point massesmj move from their equilibrium positions
(Xj ,0) to (xj (t),yj (t)). In its undisturbed state,uXj 612Xj u5 l .a, wherea
is the relaxed length of each spring, so that a string under tension is m
elled.
379 Am. J. Phys., Vol. 67, No. 5, May 1999
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For the discrete model, the definition of momentum
straightforward: Particlej has momentum with components
mẋj andmẏj in thex andy directions~the overdot represents
a time derivative!. In the continuum case, there have bee
proposed several routes to an expression for the wave m
mentum density. One route is to observe that pure transve
motion of the string doesn’t lead to momentum in the dire
tion of propagation and so the assumption of pure transv
sality of string motion has to be dropped. Following th
observation, several authors have argued that the string
to stretch in such a way that the instantaneous velocity of
infinitesimal segment of string is always perpendicular to t
segment,12–14as shown in Fig. 2. If we assume this approx
mation to be valid~and we show later that it isn’t!! then
doing a bit of geometry we find that tanu52]h/]x, and
since u]h/]xu!1, we haveu.2]h/]x. Consequently,vy

([]h/]t)5v cosu.v and hence vx5v sinu.2(]h/]t)
3(]h/]x). Thus the momentum densityg ~we use lower case
letters for densities and upper case letters for totals! carried
by the wave in thex direction is given by

g5r0vx.2r0

]h

]t

]h

]x
. ~5!

@Note that we can neglect thisx motion of string elements
when calculating the energy densitye in Eq. ~4!, because it
would only lead to a second-order correction~in the small
quantity]h/]x! to the kinetic energy density term ine.#

An apparentlymore rigorous derivation of this result is
given by Elmore and Heald~Sec. 1.11 in Ref. 10!, who make
a detailed analysis of the forces acting on an element
string including the effects of stretching.

A third approach is outlined in Appendix A, where we
show that the canonical energy–momentum tensor co
structed from the Lagrangian density of the problem leads
the identification of a wave momentum density given by th
formula forg above. In one sense, this is a remarkable agre
ment. The Lagrangian density leads directly to Eq.~2! and
contains no description of the longitudinal motion of seg
ments of the string.

With all this agreement on the formula forg, what could
be wrong?

IV. ‘‘THE MYSTERY’’

A. Parodox 1: Nonconservation of wave momentum

The first paradox arises from a study of a transverse wa
travelling down a taut string which has a discontinuity in it
linear mass density atx50 such thatr05r1 for x,0 and
r05r2 for x>0 ~see Fig. 3!. This is a well-studied
problem,2,10–16but one that can still surprise with its subtle

s

-

Fig. 2. Geometry of an element of string moving perpendicularly to its loc
direction.v is the actual velocity vector of the string element in this cas
and it has componentsvx andvy in thex andy directions, respectively. The
angle betweenvy andv is u.
379D. R. Rowland and C. Pask
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ties as we will show.~We note in passing that all the follow
ing results also apply to compressional waves propaga
along rods.!

The surprise came when we looked at trying to calcul
the amplitudes of the reflected and transmitted waves fro
consideration of energy and momentum conservation.
know from mechanics that the outcome of an elastic collis
between a massM1 , initially travelling with velocity v1i ,
with an initially stationary massM2 , is completely deter-
mined in a one-dimensional interaction by conservation
energy and momentum. Waves, like particles,~supposedly!
carry energy and momentum, and one would expect~naively
as it turns out! that conservation of energy and momentu
would also help us determine the results of wave inter
tions. Specifically, one would expect that the total ene
and momentum carried by the transmitted and reflec
waves would equal the energy and momentum of the w
incident on the discontinuity. That is, from Fig. 3, thatEr

1Et5Ei and Gr1Gt5Gi , whereG is the total momentum
carried by a wave pulse andE is the total energy carried b
a wave pulse. The subscriptsm5 i , r, andt refer to incident,
reflected, and transmitted waves, respectively.

Our results hold for the general case, but for definitene
consider incident, reflected, and transmitted waves given

h i~x,t !5Aie
2~x2c1t !2/w2

, x,0, ~6a!

h r~x,t !5Are
2~x1c1t !2/w2

, x,0, ~6b!

h t~x,t !5Ate
2~c1

2/c2
2
!~x2c2t !2/w2

, x.0, ~6c!

respectively, wheret50 has been chosen to be the tim
when the peak of the incident wave is atx50. @The standard
requirement imposed when deriving Eq.~2!, i.e., that
u]h/]xu!1, is thus equivalent touAm /wu!1.#

The total energy and momentum of each of the th
waves is found just by integrating the densities given by E
~4! and ~5! over the whole pulse at fixed times when t
pulse is well away fromx50. Thus

Ei5E
2`

0

e i dx.E
2`

`

e i dx, t!2w/c1 , ~7a!

Gi5E
2`

0

gi dx.E
2`

`

gi dx, t!2w/c1 , ~7b!

Fig. 3. Two strings with mass densitiesr1 andr2 , respectively, are joined
at x50 and put under the tensiont0 . ~a! A right-propagating wave pulse
travelling with wave speedc15At0 /r1 is initially excited on the left string
segment. The total energy and total longitudinal momentum of this w
pulse areEi and Gi , respectively.~b! After reachingx50, the incident
wave pulse generates reflected~total energyEr and total momentumGr! and
transmitted~total energyEt and total momentumGt! wave pulses.
380 Am. J. Phys., Vol. 67, No. 5, May 1999
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with similar expressions forEr , Gr , Et , andGt . Substitut-
ing Eqs. ~6! into these integrals and using the fact thatt0

5r1c1
25r2c2

2, we find that

Ei54r1c1
2IAi

2/w, ~8a!

Gi54r1c1IAi
2/w, ~8b!

Er54r1c1
2IAr

2/w, ~8c!

Gr524r1c1IAr
2/w, ~8d!

Et54r2c1c2IAt
2/w, ~8e!

Gt54r2c1IAt
2/w, ~8f!

whereI 5*2`
` u2 exp(22u2)du5Ap/25/2. ~In passing we note

that uGmu5Em /cm , m5 i ,r ,t, a general result linking energy
momentum, and wave speed for linear waves.1,2,10!

Applying conservation of energy,Ei5Er1Et , and mo-
mentum,Gi5Gr1Gt , to Eqs.~8!, we find that

At
2

Ai
2 5

2c2
2

c1~c11c2!
, ~9a!

Ar
2

Ai
2 5

c12c2

c11c2
~9b!

with the unfortunate result that ifc2.c1 , thenAr is purely
imaginary—a nonsensical result!

What went wrong? Well the usual way to find the refle
tion and transmission coefficients is to apply the bound
conditions thath(x,t) and ]h/]x be continuous atx50.
This leads to10,11

Ar

Ai
5

c22c1

c11c2
, ~10a!

At

Ai
5

2c2

c11c2
. ~10b!

These results used in Eqs.~8a!, ~8c!, and ~8e! indicate that
Er1Et5Ei , i.e., that energy is conserved in the proce
However, the momentum equations@~8b!, ~8d!, and ~8f!#
give

Gr1Gt5GiF11
2~c12c2!

~c11c2! G . ~11!

Consequently, wave momentum is not conserved!! Her
lies the ‘‘mystery’’ of the title. Ifc2.c1 , we apparently lose
some momentum somewhere and ifc2,c1 then we gain
some momentum from somewhere. It is important to rea
that Eq.~11! indicates a dramatic failure in the conservati
of momentum law and not just some small error, associa
with the smallu]h/]xu assumption for example.

B. Paradox 2: Differential tension in string

If the longitudinal motion of an element of string is go
erned by Eq.~5!, then the total longitudinal displacementDj
of an element of the string is given by

Dj5E
wave

]j

]t
dt5E

wave
2

]h

]t

]h

]x
dt. ~12!

e

380D. R. Rowland and C. Pask
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For a wave of the form given by Eq.~6a!, Dj54A2I /w,
while for an identical wave travelling in the negativex di-
rection,Dj is the negative of this.

Consider now the case of a uniform long string pluck
locally at its centre and released from rest as shown in Fig
As is well known from d’Alembert’s formula, this generate
two waves of the same shape but with half the amplitude
the original displacement, one propagating in the posit
and one propagating in the negativex directions. Infinitesi-
mal elements of the string which are initially displaced w
however, see different fractions of each wave and so will
moved different fractions of the total displacementDj
caused by the passing of the whole of the wave. For
ample, the centre element at the point A shown in Fig. 4 w
see half of each wave, and so will receive a net displacem
of zero. Elements to the left of this will receive increasing
greater negative displacements while elements to the r
will receive increasingly greater positive displacements.
example, the element at point B in Fig. 4 will see ‘‘on
quarter’’ of the left-travelling wave and ‘‘three-quarters’’ o
the right-travelling wave and so will be shifted ‘‘half’’Dj to
the right. Point C, seeing none of the left-travelling wave a
all of the right-travelling wave, will, however, be shifted a
of Dj to the right.

The above arguments lead to the conclusion that elem
of the string will be left in a state of differential tension aft
the passage of the waves. This is just not physically poss
~except maybe for a hypothetical string with zero Young
modulus! and so represents another mystery to be resolv

V. PARTIAL RESOLUTION OF PARADOX 1

A. Continuity equations

The first mystery is concerned with the conservation
otherwise of wave energy and momentum, so it makes se
to determine the relevant mathematical descriptions of
conservation of these quantities.

In general terms, a physical quantity is conserved if
time rate of change of that quantity in an arbitrary volume
space equals the negative of the flux of the quantity thro
the boundary surface of that volume. For physical quanti
that can be considered to be continuously distributed,
preceding statement can, with the help of the diverge
theorem, be written as a triple integral over the volume
question.22 Taking the limit as the volume goes to zero, w
obtain a differential equation, a so-called continuity equ
tion, which describes conservation of the physical quant
The general form of continuity equations, in one dimensi
is

]

]t
~density of physical quantity!

1
]

]x
~current density of physical quantity!50, ~13!

Fig. 4. A taut string is initially displaced transversally from equilibrium
the shape of a triangular wave~the solid curve! and released from rest. Thi
results in waves with the same shape but half the amplitude travellin
both the positive and negativex directions~dashed curves!.
381 Am. J. Phys., Vol. 67, No. 5, May 1999
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where in our case, the two physical densities of interest
energye and momentumg.

In order to get completely general results, we consi
Eqs.~2!–~5! with r0 replaced byr(x), an arbitrary function
of x.

Following the procedure developed for the case ofr a
constant, the continuity equation for energy whenr is a func-
tion of x is found by multiplying the wave equation, Eq.~2!,
by ]h/]t and then reexpressing the result in the form of E
~13!.7,10,23The resulting continuity equation is given by

]e

]t
1

]P

]x
50, ~14!

wheree is given by Eq.~4! @with r0 replaced byr(x)# and
the wave power,P, ~energy current or flux density! is given
by

P52t0

]h

]x

]h

]t
. ~15!

We thus see that wave energy is conserved on a string
varying mass density. Comparing this result with Eq.~5! and
using Eq.~3! leads toP5cT

2g, indicating the close link be-
tween momentum and energy.

For momentum, on the other hand, the continuity equat
when r is a constant has been shown to be obtainable
multiplying the wave equation by]h/]x and then reexpress
ing the result in the form of Eq.~13!.7,10,23 Whenr5r(x),
however, this procedure leads to

]g

]t
1

]b

]x
5 f ~x!, ~16!

whereg is given by Eq.~5!; and the wave momentum flow
b ~momentum current or flux density! is, for linear waves,
identical to the energy densitye. This equation isnot a con-
tinuity equation however, because of the presence of
‘‘force density’’ term f which is given by

f ~x!5
1

2

dr

dx S ]h

]t D 2

. ~17!

From Eqs.~16! and~17!, we thus see thatwave momentum is
only conserved when the string mass densityr is independent
of position x. ~More generally, any variability in the string
properties, such ast for the case of a string hanging under i
own weight,11 will lead to nonconservation of wave momen
tum. In fact, for the caset5t(x), wave energy isn’t con-
served either.!

That the term on the right-hand side of Eq.~16! can in fact
be interpreted as a force density acting on the wave can
seen as follows. Integrating Eq.~16! on the string segmen
from x5x1 to x5x2 , we find that

dG

dt
5b~x1!2b~x2!1E

x1

x2
f ~x!dx, ~18!

which has the ‘‘physical’’ interpretation: The time rate o
change of wave momentum on@x1 ,x2# equals the momen
tum flux in at x5x1 minus the flux of momentum out a
x5x2 plus the total force acting on the wave in the interv
We shall leave a more detailed discussion of the nature
this ‘‘force’’ to Sec. VII.

in
381D. R. Rowland and C. Pask
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B. Force on wave at the string discontinuity

Going back to our original problem of a step discontinu
in the mass density of the string atx50, we model that cas
as follows. Letting

r~x!5r11~r22r1!
x

Dx
~19!

on the interval@0,Dx# and taking the limit asDx→0, we find
that

dr

dx
→~r22r1!d~x!, ~20!

whered(x) is the Dirac delta function.
Thus the total forceF acting on the wave at any timet is

given by

F5E
2`

`

f ~x!dx5
1

2
~r22r1!S ]h~0,t !

]t D 2

. ~21!

Using Eqs.~6!, ~8!, and~10!, the total change in momentu
given to the wave by this forceF is therefore

DG5E
2`

`

F dt5
2~c12c2!

~c11c2!
Gi , ~22!

which is precisely the change in total wave momentum
quired by Eq.~11!!

Well that’s a relief, but it begs the following question.
there is a force which acts on the wave at the discontinu
there must be a reaction force by the wave on whatever
that is applying the force to the wave. What is this thing t
the wave applies a force to? Lots of thought and calcula
reveals that it is nothing included in the current model, wh
is hardly surprising as this is a longitudinally acting ‘‘force
and some models, such as those beginning with a Lagr
ian, have no longitudinal effects built into them. So the m
tery remains.

The resolution of this additional mystery, and paradox 2
well, will be given in Sec. VII.

VI. AN IMPORTANT ASIDE—LONGITUDINAL
WAVES IN A ROD

The astute reader may have noted at this point that
equations describing longitudinal waves in rods are just
same as those for transverse waves on a string~with the
Young’s modulusY times the cross-sectional areaS replac-
ing the tensiont, cT becomingcL5ASY/r, and the trans
verse displacementh being replaced by the longitudinal di
placementj! and so may be wondering if there is a simi
problem for those sorts of waves as well. It turns out t
there isn’t a problem, but there are some misleading dis
sions in the literature.

For longitudinal waves, both the continuity equation a
Lagrangian field theoretic approaches~see Appendix A! lead
to a wave momentum density given by Eq.~5! ~with h re-
placed byj!. Discussions in classic texts on mechanics s
as Goldstein22 and Corben and Stehle,24 interpret the wave
momentum density as being due to an ‘‘excess density’re

52r0]j/]x moving with the local displacement veloci
]j/]t, correctly noting that for waves which~possibly peri-
odically! return the particles of the medium to their equil
rium positions, the momentum densityr0]j/]t, when inte-
382 Am. J. Phys., Vol. 67, No. 5, May 1999
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grated over the wave, is identically zero. After reading
discussions in these texts, one is left believing thatG
(5*g dx) is in fact a real net momentum carried by th
wave. Gilbert and Mollow,6 however, show thatG isn’t a
real momentum, as do other authors,7–9 who also show that
G is the classical limit of phonon pseudomomentum, a
phonons are well known to carry no real momentum.5 Nu-
merical simulations of the kind discussed in Sec. VII ver
that for waves like Eq.~6! ~with h replaced byj!, the total
momentum carried by the wave as a whole is in fact zero,
that the pseudomomentumG is related to the wave energyE
by the formulaG5E/cL , as predicted by the theory fo
wave momentum.Thus G is a real property of such waves,
just isn’t the real momentum carried by the wave.

Since G is a pseudomomentum, its nonconservation
reflection and transmission at a discontinuity in the m
density of the supporting medium is, therefore, not a ca
for any concern, just a cause to be careful in interpret
what is going on. Note also, that sinceG is a pseudomomen
tum, the force density found in Eq.~17! should be more
properly called a pseudoforce, and so the fact that there i
reaction pseudoforce is therefore of no concern.

Of what interest is the wave pseudomomentumG, then?
First, as Gilbert and Mollow6 point out, it is, unlike real
momentum, a nonzero integral of the motion. They also
on to show that if the wave is coupled to an external parti
then G behaveslike a real momentum in the sense thatG
plus the momentum of the external particle is a conser
quantity, and usingG rather than the centre of mass mome
tum may be more convenient in calculations, as is the c
when calculating the results of neutron–phonon scatte
for example~remembering that phonons also only have
pseudomomentum!. Gurevich and Thellung also discuss t
value of the conservation of pseudomomentum~or quasimo-
mentum as they call it! in a homogeneous medium in both
nonlinear theory of elasticity7 and a nonlinear theory of th
interaction of light with matter.8 Thus wave pseudomomen
tum is of considerable importance in the study of longitu
nal waves.

As a final note of some importance for Sec. VII, we a
the question: ‘‘Can a longitudinal wave in a solid ever ca
a net real momentum?’’ The answer is ‘‘yes’’—but the wa
is not of the conventional type in which the medium is l
unchanged after the wave passes.~For the discrete case o
masses connected by springs, a conventional wave re
each mass to its original position.! For a longitudinal wave to
carry a real net momentum, it must be set up so that
passage of the wave leaves each mass displaced from
original position.3,7,25Such a wave carries a real net mome
tum because it involves the transfer of mass. In this case
momentum carried by the wave is still not given byG, but
rather by*waver0j̇ dx.

For this special ‘‘mass-transferring wave’’ case, t
reflection-transmission problem for longitudinal waves c
indeed be solved using conservation of energy and mom
tum. The interested reader is referred to Section 7.3 in
book by Ingard.25

VII. NUMERICAL SIMULATIONS—AND A
COMPLETE RESOLUTION OF THE MYSTERY

We now report on the results of the numerical simulatio
and see how they lead us to the resolution of the parad
presented above and the correct formulation of wave the
for this problem.
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Fig. 5. Simulations for a string witha/ l 50.95 and the normalizations used are defined at the start of Sec. VII A. The equilibrium positions of the point

making up the lattice are at integer values ofX̄ on theX̄ axis. The right end of the lattice is held fixed in place while the left end is given the displacem

j̄(2150,t̄ )[0, h̄(2150,t̄ )50.1(H( t̄ )2H( t̄ 2120))exp(2(( t̄260)/25)2) in normalized units. In this expression,H( t̄ ) is the Heaviside step function.~a! Plot

of the transverse displacementh̄(X̄,280) at time t̄ 5280, showing that a transverse Gaussian wave pulse has been set up on the string travellin

normalized wave speedc̄T5A12a/ l .0.2236, as predicted by the standard theory.~b! A plot of the longitudinal displacementsj̄(X̄,280) of each mass in the
lattice at the same time as in~a!. Observe that there are two longitudinal waves, a fast purely longitudinal precursor wave travelling at the normalise

speedc̄L51, and a slower longitudinal wave copropagating with the transverse wave.~c! Motion of the mass atX̄52110 showing the normalized transver
vs longitudinal displacements of this mass. The L wave arrives first and shifts the mass from~0,0! to ~20.0011, 0! and then when the T wave arrives, it shif
the mass from~20.0011, 0! to ~20.000 59,0.1! and thence back to~0,0!. This mass was chosen so that the L and T waves had completely separated

value of X̄ ~for earlier values ofX̄ where the L wave and T wave are still partially coincident, the motion of masses are more complicated!. ~d! Plot of

normalized longitudinal momentum densityjG []j̄/] t̄ as a function ofX̄ at time t̄ 5280. The graph of2(1/2)(]h̄/]X̄)(]h̄/] t̄ ) is indistinguishable from the

graph ofjG for the T wave.
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A. Simulation results

The numerical simulations were run on a HP server us
MATHEMATICA 26 3.0 to solve the coupled differential equ
tions given in Eqs.~1! for N particles and suitable bounda
conditions. The equations were first normalized so that
tances are scaled relative tol, the equilibrium spacing be
tween the masses when the string is under a tensiont0 ; and
time relative toAm/k, wherem is the standard mass. Wit
these normalizations, the mass density of a segment of s
with standard masses is one unit, and isr units on a segmen
of string wheremj5rm. The normalized longitudinal wav
velocity on a section of string with standard masses is t
c̄L51, and 1/Ar on a section of string with mass densityr.
The normalized tension in the string ist̄05(12a/ l ),27 and
so the normalized transverse wave velocity is given byc̄T

5A(12a/ l )/r .
As our first example, we considered setting up a transv

wave on a uniform spring–mass lattice under tension
moving the left-hand end vertically up and down in a smo
fashion~a Gaussian in time! with the right-hand end of the
lattice held fixed in place. As can be seen in Fig. 5~a!, a
Gaussian transverse wave is set up which propagates a
pected at the standard speedcT for such waves.

However, the surprise comes when we plot the accom
nying longitudinal displacement of the masses in the lat
as shown in Fig. 5~b!. The results indicate that preceding t
383 Am. J. Phys., Vol. 67, No. 5, May 1999
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transverse wave is a longitudinal wave travelling with t
speedcL5A(ka1t0)/r0. For the example given in Fig. 5
this precursor longitudinal wave displaces all the masse
the lattice20.0011 units to the left as it propagates.

Figure 5~b! also shows that there is a longitudinal motio
copropagating with the transverse wave. This longitudi
motion is such as to return all the masses back to their e
librium positions. The combined effects on a single parti
of the precursor longitudinal wave~the ‘‘L wave’’ ! and the
trailing ~mostly! transverse ‘‘T wave’’ are shown in Fig
5~c!.

Now looking at the longitudinal momentum density profi
shown in Fig. 5~d!, we see that the precursor longitudin
wave is carrying a negative momentum, whereas the tra
verse wave via its accompanying longitudinal componen
carrying a positive momentum in thex direction. Both of the
longitudinal waves do carry a real momentum because t
move mass as discussed at the end of Sec. VI.~We note here
that precursor longitudinal waves have been observed
struck piano strings—see Refs. 28 and 29 and referen
therein—though these workers have not been intereste
the momentum carried by these waves.!

Comparing the momentum density of the ‘‘transvers
wave with that predicted by the standard formula given
Eq. ~5!, we find that the numerically determined momentu
density as a function of position is precisely one-half theg of
Eq. ~5!!! 30 This refines a statement by Juenker that the m
383D. R. Rowland and C. Pask
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mentum carried by a wave depends on the relative admix
in the wave of what he calls shape and density waves.
would say rather that the total wave consists of a part wh
is purely longitudinal~the L wave! and which propagate
with the wave speedcL , and a part~the T wave! that is a
mixture of both transverse and longitudinal displaceme
but which is mostly transverse and travels at the wave sp
cT . The T wave carries a total longitudinal momentu
KT /cT ~KT is the total kinetic energy of the transverse m
tion! while the L wave carries a total momentum which d
pends on how the waves are generated and on the para
a/ l . ~By total momentum and kinetic energy, we mean
total sum of the momenta or kinetic energies of all the p
ticles involved in each wave in the discrete model, wh
corresponds to the integral over the wave of the momen
density or kinetic energy density in the continuum mode!

B. Two subtle points

First, we have seen from Fig. 5~b! that the L wave shifts
masses to the left of their equilibrium positions and the s
ceeding T wave shifts the masses to the right. Referring b
to our discussion at the end of Sec. VI, it is thus apparent
both the L wave and the T wave considered individua
carry net longitudinal momenta. We have also seen that
longitudinal momentum carried by the T wave is related
the transverse motion of the string through the relationGT

52*T wave(1/2)r0h8ḣ dx. What of the total momentumGL
carried by the L wave, though? At first sight, one might~in
the case studied here! expect it to carry an equal but oppos
momentum to the T wave, as the passage of both wa
leaves each mass back at its starting position. However
cause the L wave and T wave travel with different propa
tion velocities, the longitudinal motions in each are not~nec-
essarily! mirror images of each other, and so the ove
momentum need not be zero.@For the example given here
the overall longitudinal momentum is in fact negative, b
causeGL52(cL /cT)GT for the way these waves were ge
erated.! This is to be expected—the net longitudinal mome
tum carried by both waves must depend on the longitud
forces and speeds used to generate the initial wave.

This is a subtle point: Note that moving the leftmost m
in our string vertically stretches the spring between it and
neighbouring mass, and so it exerts a pull on this mass,
there is a longitudinal or negativex-directed force on the
second mass in the chain. Thus the total longitudinal imp
given to the chain by the transverse motion of the leftm
mass in the chain is given by2*(tx(t)2t0)dt, wheretx is
the x component of the tension in the leftmost spring in
chain. Evaluating this impulse numerically for the moti
used to generate the waves shown in Fig. 5, we find th
agrees, as expected, with( jmj ẋj , the total longitudinal mo-
mentum carried by both the L wave and the T wave.

The second point that we wish to make is that the a
reader may also be wondering why the T-wave componen
Fig. 5~d! is asymmetric. This asymmetrisation of the T wa
is due to dispersion, which is of course not included in cl
sic string theory. Since classic string theory is just the lo
wavelength limit of our model, however, this effect can
course be reduced by making the pulse broader, but on
the expense of longer computational times.~Notice also that
becausecL.cT , the precursor longitudinal wave is broad
than the transverse wave, and asymmetrisation due to di
sion is not yet visible in it.!
384 Am. J. Phys., Vol. 67, No. 5, May 1999
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C. Resolving paradox 2

We are now in a position to resolve paradox 2. First
note that it is true that a transverse wavedoesshift each
element of string away from where it found it and in t
direction of propagation because it is indeed accompanie
a longitudinal wave. However, because the generation
transverse wave necessarily generates another longitu
wave which separates off moving at speedcL and which
shifts every element of string it meets in the opposite dir
tion to its propagation, the net effect of the passage of b
waves is to leave each element of string back in its equ
rium position. Thus there is no differential tension set up
the plucked string example of Sec. IV B after both of t
waves have passed by, as verified by further simulations

D. Understanding the waves involved

In summary then, simulations of the type shown in Fig
show that when we try to set up a transverse wave on
elastic string, we in fact generate two waves which tra
independently of each other. The faster of these waves t
els with the speedcL and is a purely longitudinal mode o
vibration. For convenience we shall refer to this wave as
‘‘L wave.’’ The slower of the two waves generated travels
the speedcT and includes both longitudinal as well as tran
verse motion of the particles. Since the dominant motion
transverse and the wave travels at the transverse wave s
cT , we call these waves ‘‘T waves.’’~Note that our L and T
waves are a bit like the P and S waves of seismology,
though since the T wave has both transverse and longitud
components, it is perhaps more akin to the Rayleigh sur
waves of seismology.25,31L and T waves as we describe ha
in fact been posited before in a theoretical analysis
Broer,15 though the work of this author does not appear to
well known.!

Why is there an L wave associated with the T wa
though? Well, recall that stretching or ‘‘compressing’’~actu-
ally relaxing the tension in! the string longitudinally will
generate a longitudinal wave in the string. Consequen
since moving the left-hand end of the string vertically u
wards necessarily stretches the string, doing so inescap
generates a longitudinal wave along with the transve
wave.

From Fig. 5~c!, we see that our Gaussian T wave shi
each mass in the lattice to the right as well as up and do
One might presume therefore, that moving the left-hand
of the lattice to the right in just the correct way when movi
it up and down, should produce a T wave only. This is in fac
the case.~From the preceding paragraph, we can see th
pure T wave will be generated if the string is moved tra
versally and to the right so that the string is nev
stretched—see Appendix B 2.! What’s the correct way to
move the lattice to the right, though? Well, the simulatio
show that the longitudinal velocity profile of a T wave is
given byg/(2r0), so we should move the lattice to the rig
with a velocity which matches this, i.e.,

]j

]t
5

1

2cT
S ]h

]t D 2

, ~23!

where]h/]t is the time derivative of the transverse displac
ment given to the left-hand end of the lattice.@Note that
because this formula has to be evaluated at the left-hand
of the lattice, the]h/]x in the formula forg had to be trans-
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formed to2(]h/]t)/cT , assumingh5 f (x2cTt) is a valid
solution. A theoretical discussion leading to Eq.~23! is given
in Appendix B.#

We observe that the motion of the left-hand end of
string needed to produce a pure T wave in the form o
Gaussian pulse is shown by the T-wave part of Fig. 5~c!.
Note that since this wave shifts masses to the right of t
equilibrium position, it carries a net momentum.

E. Resolving paradox 1

We can now address paradox 1: why wave momen
~which is the momentum carried by the T wave! is not con-
served at a discontinuity in the mass density of the string
where the ‘‘force’’ f in Eq. ~16! comes from. It is now prob
ably obvious from the preceding discussion that~T-! wave
momentum is not conserved at a discontinuitybecause the
element of string at the discontinuity cannot simultaneou
move so as to produce a pure T-wave for both the refle
and transmitted waves, and thus new L waves are generat
at the discontinuity. The ‘‘force density’’ in Eq.~16! is thus
seen to be~twice! the force the L waves generated at t
discontinuity apply to the T waves generated at the disc
tinuity. This is verified by simulations.

F. Special case—thecT5cL limit

From Appendix B, we see thatcT5cL when a50, or
equivalently, whenSY50. This condition is approximatel
met by the Slinky spring which has effectively a zero relax
length.32–34 In this case, the T wave and L wave travel t
gether. Thus in the situation discussed above where a wa
excited by moving one end of the Slinky transversely, th
wave moves particles to the left and the T wave puts th
back again simultaneously, thus resulting in a purely tra
verse motion of the elements of the Slinky spring.32,33 Since
the particles in the spring move purely transversely,such a
wave carries no longitudinal momentum. This can be
checked in the simulations by reflecting such a wave o
heavy particle placed at the opposite end of the Slinky.~Of
course, a wave with longitudinal momentumcan be gener-
ated in a Slinky by also moving the wave generating e
longitudinally as well as transversely.!

Before we finish this special case, we’d like to look at
argument put forward by Pierce.2 He states that it can b
seen that a transverse wave on a string carries longitud
momentum by the following argument. When a transve
pulse is reflected off a fixed end, the string makes an ang
the wall. The component of the string tension in the long
dinal direction is thus less than it was when the pulse was
present~assuming the tension in the string to be unchan
by the presence of the pulse!. This reduction in tension is
equivalent to a force against the wall and this force is du
the momentum carried by the wave.

The error in this argument is easily seen in thecT5cL
limit. Using the model described with Eqs.~1! in this case
for a purely transverse wave, it is easily shown that ther
an increase in the string tension due to the wave, and tha
increase in tension exactly compensates for the angle tha
string makes to the fixed end.34 Thus in this case, there is n
change in the longitudinal component of tension as the p
gets reflected from the fixed end, and so the wave carrie
longitudinal momentum as stated above. We conclude th
fore, that while itis a valid approximation to neglect chang
385 Am. J. Phys., Vol. 67, No. 5, May 1999
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in string tension when deriving the transverse wave equa
@Eq. ~2!#, these changes in tension are of crucial importan
when it comes to the analysis of longitudinal momentum

G. Seeing it all mathematically

With the results of the simulations to guide us, we c
now see how the continuum wave equations can lead u
the same conclusions. In the continuum limit, the appropr
wave equations for the transverseh(x,t) and longitudinal
j(x,t) displacements of the string are~see Appendix B!:

]2h

]t2 5cT
2 ]2h

]x2 , ~24!

]2j

]t2 5cL
2 ]2j

]x2 1~cL
22cT

2!
]h

]x

]2h

]x2 . ~25!

Equation ~24! is the standard equation and we conside
travelling wave solution

h~x,t !5 f ~x2cTt !. ~26!

Equation~25! says thatj will be a parth(x2cLt) propagat-
ing with the longitudinal speedcL plus a part driven by the
term involving h. This latter term we can write a
q(x2cTt). Thus

j~x,t !5h~x2cLt !1q~x2cTt !. ~27!

Substituting Eqs.~26! and ~27! into ~25! and puttingu5x
2cTt gives

d2q

du2 52
d f

du

d2f

du2 , ~28!

which integrates to

dq

du
52

1

2 S d f

duD 2

. ~29!

If we multiply by r0cT , this equation is equivalent to

r0

]q

]t
52

1

2
r0

] f

]t

] f

]x
[2

1

2
r0

]h

]t

]h

]x
. ~30!

Thus we see that the momentum carried by the longitudinj
wave driven or accompanied by the transverseh wave is
exactly (1/2)g, as revealed by the simulations.

Thus our theory neatly confirms the general behavior
duced from the simulations—namely, that the motion o
string involves a transverse wave and two longitudin
waves, one travelling with speedcL and the other travelling
together with the transverse wave at speedcT . The connec-
tion between the real momentum of the T wave in thex
direction and the ‘‘momentum’’ derived for transverse wav
is now very clear and Eq.~25! shows that there is a genuin
link, not some mere coincidence, as the transverse wa
may be seen to drive a longitudinal wave.

H. Relative magnitudes and importance

One last question remains though, and that is why are
these results already well known? The answer has to do
the relative size and importance of effects. First the relat
size.

The total transverse and longitudinal kinetic energies
the waves are given by KT5*T wave(1/2)r0ḣ2 dx
385D. R. Rowland and C. Pask
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[( j (1/2)mj ḣ j
2 and KL5*T wave1L wave(1/2)r0j̇2 dx

[( j (1/2)mj j̇ j
2, respectively. For the simulation shown

Fig. 5, KL /KT.2.331024, and thus the amount of energ
carried by the longitudinal motions cogenerated with
transverse motion is negligibly small~except when magni
fied by the sound board of a musical instrument28! provided
all you are interested in is the transverse motion of
string. That is to say, if one is only interested in the tran
verse wave motion of the string~and that is what most text
book examples are only interested in!, then the usual formu
lae for the transverse wave equation and for the amplitu
of the transverse waves reflected and transmitted at a dis
tinuity in the string’s mass density are all perfectly adequ
If, however, one wants to know anything about longitudi
motion of the string, such as the momentum carried by
string in the direction of propagation,then a fully self-
consistent theory must include all of the effects we have b
talking about.

Now the relative importance. Since the momentum car
by transverse waves is so small, and most of the question
interest can be answered without recourse to momen
wave momentum has not received a lot of attention and
hitherto been mostly of theoretical interest. And since
problem can’t be solved exactly analytically, many previo
theoretical treatments,without the support of simulations,
have made errors in their underlying assumptions. Wave
mentum may remain to be of theoretical interest for tra
verse waves~but it’s good to get that theory right!!! though it
is receiving increased attention for longitudinal waves
nonlinear applications.7–9 It should also be noted that precu
sor longitudinal wavesare of importance in creating the
characteristic tones of the various stringed musical ins
ments because of the magnifying effects of the sound bo
of these instruments.28

VIII. CONCLUDING DISCUSSION

We have discovered that with regard to the concept of
longitudinal momentum carried by a ‘‘transverse’’ wave on
taut string, the literature is confused and contradictory. I
widely claimed, e.g., Refs. 10, 12–14 that the wave mom
tum density is given byg52r0(]h/]x)(]h/]t)[2r0

3h8ḣ or equivalently that the total momentum carried
the wave is given byG5E/cT , whereE is the total~kinetic
K plus potentialU! energy carried by the wave. This is al
the wave momentum given by the canonical energ
momentum tensor when transverse motion alone is con
ered. Juenker,3 on the other hand, claims that the answ
depends on the properties of the string and on how the w
is initiated. He considers explicitly two examples:~i! waves
on a rope-like~i.e., inextensible! string, for whichG5K/cT

and ~ii ! waves on a Slinky spring~for which cL5cT! for
which the relationship between energy and wave velo
depends on the relative admixture of L and T waves~our
terminology! in the wave. Broer15 also posits the existence o
what we call T waves, and shows that for these wavesG
5K/cT , noting their correspondence to waves on an in
tensible string.Implicit in Broer’s analysis is that for T
waves,g52(1/2)r0h8ḣ.

We have attacked a resolution of the confusion on sev
fronts. First, we showed that assumingg52r0h8ḣ and ne-
glecting what we’ve called L waves led to paradoxes.
386 Am. J. Phys., Vol. 67, No. 5, May 1999
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then used numerical simulations of an ideal string~perfectly
flexible with linear elasticity! to resolve the paradoxes and
guide our theoretical analyses.

The conclusions of this work are as follows. One can
except in the case whencL5cT , excite a purely transvers
unidirectional wave on an elastic string; longitudinal wav
are inescapably generated as well. However, for finite w
pulses~except in the case whencL5cT! a pure L wave will
separate from what we call a T wave, a wave which propa
gates with unchanging shape at the standard transverse
velocity cT . The dominant motion associated with a T wave
is transverse, but it also includes a small longitudinal co
ponent which provides the longitudinal momentum of t
wave. In fact, T waves propagate exactly like the ‘‘tran
verse’’ wave on theinextensiblestring discussed by Juenke3

and Broer.15 The longitudinal momentum carried by T wav
is found numerically to beG5KT /cT , with the momentum
densityg52(1/2)r0h8ḣ. This momentum was also show
to be a real momentum, not just a pseudomomentum a
often found with longitudinal waves. On the other hand,
total longitudinal momentum carried by the L wave depen
on how the waves are generated and on the physical pa
eter a/ l ~or equivalently onSYand t0!. We have also pre
sented new theoretical arguments to support the results o
numerical simulations. These results confirm and extend
analyses of Broer15 and Juenker.3

Further, we have discovered that it is possible to gene
in the simulations a pure T wave at one end of a stri
When this wave hits a discontinuity in the mass density
the string, L waves are generated in addition to the trans
ted and reflected T waves. The energy of these L wave
small in comparison to the energy of the T waves, so t
first approximation, they may be ignored and the stand
results for the amplitudes of the reflected and transmi
transverse waves hold. The L waves areessentialhowever,
for the total momentum of the system to be conserved,
their generation leads to the force density term in Eq.~16!. L
waves are also necessary to resolve the differential ten
‘‘paradox’’ of Sec. IV B.

Finally, what now is the status of the continuity equati
~16! and the energy–momentum tensor given by Eq.~34!?
Well, neither give theactualmomentum density carried by T
waves, though both, with a care for interpretation, can
used as valid calculational tools~see Secs. IV A and IV B!.

It might be fitting to conclude with some words from Th
Master, Lord Rayleigh:

@32, Vol. I, Chap. VI#. ‘‘Among vibrating bodies there are
none that occupy a more prominent position th
Stretched Strings. From the earliest times they have b
employed for musical purposes... . To the mathematic
they must always possess a peculiar interest as a ba
field on which were fought out the controversies
D’Alembert, Euler, Bernoulli, and Lagrange relating to t
nature of the solutions of partial differential equations.
the student of Acoustics they are doubly important.’’

We trust that the smoke is now clearing from the battle o
stretched-string wave momentum propagation.

APPENDIX A: LAGRANGIAN PERSPECTIVE

This Appendix follows Goldstein~Ref. 22, Chap. 12!, and
for notational convenience we introduce the following su
script notation:x0[t, x1[x, h ,m[]h/]xm ; the greek sub-
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sion
.

-

scriptsm, n will take on the values 0 and 1; and the Einste
summation convention over repeated subscripts will be
sumed.

Consider a general Lagrangian density with the function
dependenceL5L(h,h ,n ,xn), n50,1. Taking the total de-
rivative dL/dxm and using the Lagrange equations of m
tion, i.e.,

d

dxn
S ]L
]h ,n

D2
]L
]h

50, ~31!

the following two 2-divergences for the energy–momentu
tensorTmn for the field may be derived:

dTmn

dxn
52

]L
]xm

, ~32!

where

Tmn5
]L

]h ,n
h ,m2Ldmn ~33!

anddmn is the Kronecker delta symbol.
From Eq.~4!, we can see that the Lagrangian density f

transverse waves on a stretched string is just

L5 1
2r0h ,0

2 2 1
2t0h ,1

2 . ~34!

Thus T00[(]L/]h ,0)h ,02L5e, the energy density of the
wave; T01[(]L/]h ,1)h ,052t0h ,1h ,0 , the energy current
density ~power! of the wave;T10[(]L/]h ,0)h ,15r0h ,1h ,0

[2g, the negative of the momentum density of the wav
and T11[(]L/]h ,1)h ,12L52e, the negative of the mo-
mentum current density of the wave.

The two-divergences, Eq.~32!, thus lead in this case to
~going back to our normal notation for clarity!

]e~x,t !

]t
1

]P~x,t !

]x
52

]L
]t

~35!

and

]g~x,t !

]t
1

]b~x,t !

]x
5

]L
]x

, ~36!

where we have introduced the symbolb(x,t) for the momen-
tum current density.~Note that for linear waves in a disper
sionless medium,b[e, but this result is not true in general.!
These equations are basically Eqs.~14! and ~16! from the
main text, and we thus see that energy will be conserve
the Lagrangian density is explicitly independent of timet,
and momentum will be conserved if the Lagrangian dens
is explicitly independent of positionx. Thus from Eq.~34!,
we see that ifr5r(x), energy will be conserved but mo
mentum will not, a point alluded to by some authors,22,35but
not discussed in any detail. Note also that withr5r(x) in
Eq. ~34!, Eq. ~36! reduces to Eq.~16! in the main text.

Finally, it should be emphasised that the Lagrangian in E
~34! is the one that leads to the standard transverse w
equation. A symmetry property—invariance under spa
translation—leads to a quantity which is labelled ‘‘mome
tum.’’ However, the link to the concept of momentum a
used in dynamics is not explicitly made in this theory.
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APPENDIX B: THREE DERIVATIONS OF THE
CORRECT FORMULA FOR WAVE MOMENTUM

1. Via the coupled wave equations

A more accurate set of equations governing the propa
tion of waves on a taut string than Eq.~2! can be found by
taking the continuum limit of Eqs.~1!. In Eqs.~1!, (xj ,yj )
are the spatial frame coordinates of the massmj , whose
~assumed fixed! material frame coordinates are (Xj ,0). Let-
ting (j j ,h j ) be the relative displacement coordinates of
massmj , thenxj[Xj1j j andyj[h j . Rewriting Eqs.~1! in
terms ofj j and h j and making second-order Taylor seri
approximations,

xj 61.Xj6 l 1j j6j j8l 1
1
2 j j9l

2, ~37a!

yj 61.h j6h j8l 1
1
2 h j9l

2, ~37b!

we find, to lowest order, that

r0j̈.~SY1t0!j91SYh8h9, ~38a!

r0ḧ.t0h91SY~ 3
2 h82h91j8h91h8j9!.t0h9,

~38b!

wherer0[m/ l , the equilibrium mass density of the strin
t0[k( l 2a), the equilibrium tension in the string; andSY
5ka is the product of the cross-sectional areaS and the
Young’s modulusY of the string.~Note that these equation
differ from those proposed in Refs. 10 and 14, but are
lieved to be the correct equations by virtue of their agr
ment with the numerical simulations. They are also con
tent, when the approximationsuh8u!1 and uj8u!1 are
made, with the equations derived by Morse and Ingard36 in a
treatment of the nonlinear effects experienced bylarge am-
plitude waves propagating along ideal strings. We str
though, that the importance of these equations with regar
the longitudinal momentum carried by small amplitu
waves was not realised by these authors.!

Equation~38b! is of course, the standard transverse wa
equation for waves propagating at the wave speedcT

5At0 /r0. When h→0, Eq. ~38a! reduces to the standar
wave equation for longitudinal waves on a taut strin16

propagating with the wave speedcL5A(SY1t0)/r0. Note
that the tension increasescL over its value for longitudinal
waves in an unstressed solid.~Note also that Refs. 10 and 1
make the approximationcL.ASY/r0, assuming thatt0

!SY.!
As an aside, and tying up a loose end from the discus

in Appendix A, using Eqs.~37! in the model which gives Eq
~1!, we find that the Lagrangian density for the stringinclud-
ing the effects of longitudinal stretching, is given by

L5
1

2
r0~ j̇21ḣ2!2

1

2
klSA~11j8!21h822

a

l D
2

5 1
2 r0~ j̇21ḣ2!2 1

2 ~SY1t0!

3SA~11j8!21h822
SY

SY1t0
D 2

, ~39!

where the field variablesj andh are considered to be func
tions of the independent variables timet and material coor-
dinate X. Applying the Euler–Lagrange equations22 to Eq.
~39!, and making our usual approximationsuj8u!1 and
387D. R. Rowland and C. Pask
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uh8u!1, we again obtain Eqs.~38! to lowest order.
Our simulations suggest that when a transverse wav

present, then the total longitudinal displacement can be w
ten as a sum of waves travelling with speedscL and cT .
Making this assumption, we substitutej(x,t)5jL(x2cLt)
1jT(x2cTt) into Eq. ~38a!, and, making use of Eq.~38b!

andr0j̈L5(SY1t0)jL9 , we find thatjT952h8h9, and so

jT852 1
2 h82. ~40!

For a wave of the assumed form, this result is equivalen
Eq. ~23! in the main text, therefore Q.E.D.

Note also that in the limita→0, ka5SY→0 and the lon-
gitudinal and transverse wave equations become compl
independent of each other. Thus in this limit, a purely tra
verse wave becomes possible, and since such a wave h
longitudinal motion, it carries no longitudinal momentum

2. Geometric argument

Consider a piece of string with its ends fixed a distanceL0
apart. After the generation of the wave~we presume cause
by the lateral motion of the left-hand end! the length of the
string will be

L5E
0

L0A11h82 dx.L01E
0

L0 1

2
h82 dx, ~41!

if uh8u!1. As any stretching of the string will lead to
differential tension in the string and hence produce a lon
tudinal wave, we see that in setting up the wave, the l
hand end will have needed to move to the right by
amountDj5DL.*wave(1/2)h82 dx in order to maintain the
total length of the string atL0 and so avoid the production o
a longitudinal wave.~Recall that this is in fact the procedu
we described in Sec. VI D for generating a pure T wave
this is just another way of looking at that process.!

Now if h5 f (x2cTt), then h852ḣ/cT and
*wave(1/2)h82dx[*wave2(1/2)h8ḣ dt, and since Dj

[*wavej̇ dt, we thus havej̇52(1/2)h8ḣ as required.

3. Inextensible rope argument

The wave set up by the argument in Sec. B 2 above, pr
gates in exactly the same fashion as a wave set up in
inextensible rope. Such waves have been analysed
Juenker,3 and Broer,15 who have shown that th
x-propagating momentum of the wave isG5K/cT , whereK
is the total kinetic energy carried by the wave. Since
energy associated with the continuity equation forg is K
1U, whereU is the potential energy carried by the wav
and sinceU5K, it is perhaps not surprising then thatg is
twice the real physical momentum carried by the T wave

1R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures o
Physics~Addison–Wesley, Reading, MA, 1964!, Vol. II, Chap. 27.

2J. R. Pierce,Almost All About Waves~MIT, Cambridge, MA, 1974!.
3D. W. Juenker, ‘‘Energy and Momentum Transport in String Wave
Am. J. Phys.44, 94–99~1976!.

4Lord Rayleigh, ‘‘On the Momentum and Pressure of Gaseous Vibrati
and on the Connexion with the Virial Theorem,’’ Philos. Mag.10, 364–
374 ~1905!.

5C. Kittel, Introduction to Solid State Physics~Wiley, New York, 1986!,
6th ed.

6I. H. Gilbert and B. R. Mollow, ‘‘Momentum of Longitudinal Elastic
Vibrations,’’ Am. J. Phys.36, 822–825~1968!.
388 Am. J. Phys., Vol. 67, No. 5, May 1999

Downloaded 08 Apr 2013 to 129.241.49.215. Redistribution subject to AAPT lic
is
it-

to

ly
-
no

i-
t-
e

a-
an
by

e

,

s,

7V. L. Gurevich and A. Thellung, ‘‘Quasimomentum in the theory of ela
ticity and its conservation,’’ Phys. Rev. B42, 7345–7349~1990!.

8V. L. Gurevich and A. Thellung, ‘‘On the quasimomentum of light an
matter and its conservation,’’ Physica A188, 654–674~1992!.

9D. F. Nelson, ‘‘Momentum, pseudomomentum, and wave momentum:
ward resolving the Minkowski–Abraham controversy,’’ Phys. Rev. A44,
3985–3996~1991!.

10W. C. Elmore and M. A. Heald,Physics of Waves~McGraw–Hill, New
York, 1969!.

11C. A. Coulson and A. Jeffrey,Waves: A Mathematical Approach to th
Common Types of Wave Motion~Longman, London, 1977!.

12A. Hirose and K. E. Lonngren,Introduction to Wave Phenomena~Wiley,
New York, 1985!.

13R. Benumof, ‘‘Momentum propagation by travelling waves on a string
Am. J. Phys.50, 20–25~1982!.

14P. Stehle, ‘‘The momentum of a transverse wave,’’ Am. J. Phys.55, 613–
615 ~1987!.

15L. J. F. Broer, ‘‘On the Dynamics of Strings,’’ J. Eng. Math.4, 195–202
~1970!.

16G. R. Baldcock and T. Bridgeman,Mathematical Theory of Wave Motion
~Ellis–Harwood, Chichester, 1981!.

17S. Trillo and S. Wabnitz, ‘‘Nonlinear Dynamics of Parametric Wav
Mixing Interactions in Optics: Instabilities and Chaos,’’ inGuided Wave
Nonlinear Optics, edited by D. B. Ostrowsky and R. Reinisch~Kluwer,
Dordrecht, The Netherlands, 1992!, pp. 489–534.

18C. Pask, D. R. Rowland, and W. Samir, ‘‘A Constant of Motion for Mod
Interactions in Nonlinear Dielectric Waveguides,’’ J. Opt. Soc. Am. B15,
1871–1879~1998!.

19F. N. H. Robinson, ‘‘Electromagnetic Stress and Momentum in Matte
Phys. Rep.16, 313–354~1975!.

20I. Brevik, ‘‘Experiments in Phenomenological Electrodynamics and
Electromagnetic Energy-Momentum Tensor,’’ Phys. Rep.52, 133–201
~1979!.

21W. Shockley, ‘‘A ‘Try Simplest Cases’ Resolution of the Abraham
Minkowski Controversy on Electromagnetic Momentum in Matter,’’ Pro
Natl. Acad. Sci. USA60, 807–813~1968!.

22H. Goldstein, Classical Mechanics~Addison–Wesley, Reading, MA,
1980!, 2nd ed.

23S. B. Palmer and M. S. Rogalski,Advanced University Physics~Gordon
and Breach, New York, 1996!.

24H. C. Corben and P. Stehle,Classical Mechanics~Wiley, New York,
1960!.

25K. U. Ingard,Fundamentals of Waves and Oscillations~Cambridge U.P.,
Cambridge, 1988!.

26S. Wolfram,The Mathematica Book~Cambridge U.P., Cambridge, 1996!,
3rd ed.

27The a/ l 50 limit is approximated by the Slinky spring, a popular wav
demonstration ‘‘toy,’’ which has essentially a zero relaxed length and
for which cT.cL . At the other extreme, a piano wire tuned to 440 H
must be stretched by about 3%~Ref. 13!.

28N. Giordano and A. J. Korty, ‘‘Motion of a piano string: Longitudina
vibrations and the role of the bridge,’’ J. Acoust. Soc. Am.100, 3899–
3908 ~1996!.

29N. Giordano, ‘‘The Physics of Vibrating Strings,’’ Comput. Phys.12,
138–145~1998!.

30That the wave behaves like a particle with total momentumG

5*waver0j̇dx52(1/2)*waver0h8ḣdx, can be seen by simulating the re
flection of a wave off a very large mass located at the right-hand end o
chain and attached to a fixed wall by a standard spring under the stan
tension t0 . This mass picks up momentum 2G as expected from the
physics of particles. The mass needs to be very large so that in pickin
this momentum, it hardly moves and so doesn’t stretch the springs
tached to it significantly.

31L. A. Segel,Mathematics Applied to Continuum Mechanics~Macmillan,
New York, 1977!.

32J. B. Keller, ‘‘Large Amplitude Motion of a String,’’ Am. J. Phys.27,
584–586~1959!.

33J. C. Luke, ‘‘The motion of a stretched string with zero relaxed length
a gravitational field,’’ Am. J. Phys.60, 529–532~1992!.

34E. A. Jagla and D. A. R. Dalvit, ‘‘Null-length springs: Some curiou
properties,’’ Am. J. Phys.59, 434–436~1991!.

35G. B. Whitham,Linear and Nonlinear Waves~Wiley, New York, 1974!.
36P. M. Morse and K. U. Ingard,Theoretical Acoustics~McGraw–Hill, New

York, 1968!.
388D. R. Rowland and C. Pask

ense or copyright; see http://ajp.aapt.org/authors/copyright_permission


