AMERICAN
JOURNAL

PHYSICS EDUCATION C-'f PHYSICS -
R ——

The missing wave momentum mystery
David R. Rowland and Colin Pask

Citation: Am. J. Phys. 67, 378 (1999); doi: 10.1119/1.19272

View online: http://dx.doi.org/10.1119/1.19272

View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v67/i5
Published by the American Association of Physics Teachers

Additional information on Am. J. Phys.

Journal Homepage: http://ajp.aapt.org/

Journal Information: http://ajp.aapt.org/about/about_the_journal

Top downloads: http://ajp.aapt.org/most_downloaded

Information for Authors: http://ajp.dickinson.edu/Contributors/contGeninfo.htmi

ADVERTISEMENT
WebAssian. f:;ﬁn?;;E | éwn LEY

— W. H.
m=== openstax coleGe I FREEMAN
—

The PREFERRED Online Homework
Solution for Physics

Every textbook publisher agrees! Whichever physics text
you're using, we have the proven online homework
solution you need. WebAssign supports every major
physics textbook from every major publisher.

% Higher Education [EEFC&101\|

R S o S S e e R
- & y R X — .'hl‘.\flf\ — S

webassign.net

Downloaded 08 Apr 2013 to 129.241.49.215. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission


http://ajp.aapt.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/28489377/x01/AIP/WebAssign_AJPCovAd_1640banner_03_13thru03_26_2013/WebAssign_Download_Banner_Physics_09062012.jpg/7744715775302b784f4d774142526b39?x
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=David R. Rowland&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=Colin Pask&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.19272?ver=pdfcov
http://ajp.aapt.org/resource/1/AJPIAS/v67/i5?ver=pdfcov
http://www.aapt.org/?ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://ajp.aapt.org/about/about_the_journal?ver=pdfcov
http://ajp.aapt.org/most_downloaded?ver=pdfcov
http://ajp.dickinson.edu/Contributors/contGenInfo.html?ver=pdfcov

The missing wave momentum mystery

David R. Rowland and Colin Pask
School of Mathematics and Statistics, University College, The University of New South Wales,
Australian Defence Force Academy, Canberra ACT 2600, Australia

(Received 9 July 1998; accepted 18 September 1998

The usual suggestion for the longitudinally propagating momentum carried by a transverse wave on
a string is shown to lead to paradoxes. Numerical simulations provide clues for resolving these
paradoxes. The usual formula for wave momentum should be changed by a factor of 2 and the
involvement of the cogenerated longitudinal waves is shown to be of crucial importance9gs©
American Association of Physics Teachers.

[. INTRODUCTION dard presentations of wave theory are presented. This is fol-
lowed by some concluding remarks and appendices contain-
This paper deals with two key elements in physics. Firsting a few more technical details. .
the conservation of energy and momentum principles— Before we proceed, we should also mention that we were
probably our two most important principles for understand-€d to consider this problem from our research into conser-
ing and analysing physical phenomena. Second, the propag¥@tion laws for _mogalgmteractlon's in multimoded nonlinear
tion of waves along a stretched string—the canonicaPPtical waveguides’® Conservation of momentum would

example used when studying continuum systems and waye€ €XPected to give one such conservation law for such prob-
theory. lems. The topic of electromagnetic momentum in material

First recall that the special theory of relativity tells us thatmeq['a’ h;);a\,/\llg\zlt?.lr.’ ||s 2 d'ﬁ'cﬂltth one fraugh'é Y‘gthd
energy has associated with it a relativistic mass, and s O?orllcz)vvsr;h.ockle 9sca%:'/?éesg?1ﬁr° sin? Ilse’:zltjisz;s\gse% ri%'_ €
propagating energy, be it particle or wave, has associated .. CKIEY . y Simplest cases,
with it a relativistic momenturt. The classic example of a chanical oscillations on strings or in rods being presumably

wave carrying momentum is of course the eIectromagneti%f‘mpler models in which to investigate the physics of wave

field, even though the wave itself is made up of zero res omentum.
mass particles. The question as to whether all forms o
propagating energy carnmyonrelativisticmomentum though, II' PHYSICAL MODEL

is not so straightforward, however, with Pietead Juenker We take as our physical model the standard ideal
for example warning the reader to be wary. In fact, Rayleighstring'®* which is assumed to be perfectly flexible and lin-
showed in 1905 that in fluids of certain hypothetical early elastic. By perfectly flexible it is meant that the string
pressure—density behavior, a wave might carry zero or evehas no flexural rigidity and so the only restoring force acting
negative momenturh.lt is also well known in solid state on string elements is a tensile force acting everywhere tan-
physics, that while a phonon in a crystal might carry thegential to the local string direction. Linear elasticity, on the
pseudomomentum Ak, it carries no real physical other hand, implies that the tensile force is assumed to de-

momentun®® pend linearly on the amount the string is stretched from its
Transverse waves travelling down a taut string are a wellundeformed lengtf?
studied phenomenaor1%~8with the first full analytic solu- With the above assumptions, we can model our string as a

1—

tion of the vibrating string being given by Lagrange back inlinear chain of point masses joined by ideéaiassless and
1759. Consequently, one might expect that the question dflookean springs, which are stretched from their relaxed or
what actual momentum, if any, such waves carry in theirunstressed lengta (see Fig. 1 The equations of motion for
direction of motion would have been satisfactorily answeredthe massm; are thus

We show in this paper, however, that previously presented a a

answers to this question lead to paradoxes and so must either m;X;=— k( 1— —) (x;—Xj_1) +k )

be incorrect, or at least incomplete. We resolve these para- ljj-1 ljj+1

doxes using numerical simulations as a guide to the devel- X (Xj 11— %)), (1a)
opment of a complete and fully self-consistent theory.

The paper is arranged as follows. In Secs. Il and Il we =kl 1— _ il 1 a
describe our basic stretched-string model and discuss the rel- MiYi~ I (Yi=Yj-1) T
evant definitions of energy and momentum. Then in Sec. IV, ' '
we show that the standard model and definitions lead to a X(Yj+17Y),s (1b)
mystery expressed as paradoxes arising when wave reflec- Ij,jilz[(xjil_xj)2+(yjil_yj)2]l/21 (10)

tions and tension in the string are analyzed. In Sec. V, an

examination of a conservation principle and its origins pro-wherek is the spring constant of each of the springsis the
vides a partial resolution to the first paradox. We then pausngitudinal andy; the transverse coordinate of the mags

for an important aside—the questions we raise are reallandl; ;. is the distance between the massgsandm;..,,
quite general and we discuss longitudinal waves in a rod agespectively. It is important to note that when no waves are
an example. Using numerical simulations as a guide, th@resent, each spring has a lendthreater than its relaxed
paradoxes are resolved in Sec. VII and corrections to starlength a so that a string under tension is modell€d@his
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Fig. 2. Geometry of an element of string moving perpendicularly to its local
direction.v is the actual velocity vector of the string element in this case,

_ _ ) ) ) ) and it has components andv, in thex andy directions, respectively. The
Fig. 1. Schematic of our model of an ideal string: a lattice of point massesyngle betweew, andv is 6.

joined by massless, linearly elastic springs with spring constanfs a
wave passes, the point masses move from their equilibrium positions
(X;,0) to (x;(t),y;(1)). In its undisturbed stat¢X;.,— X;|=1>a, wherea . L .
is the relaxed length of each spring, so that a string under tension is mod- FOr the discrete model, the definition of momentum is
elled. straightforward: Particl¢ has momentum with components
mYx; andmy; in thex andy directions(the overdot represents
a time derivative In the continuum case, there have been
allows longitudinal waves to propagate in a flexible solid like proposed several routes to an expression for the wave mo-
a string—longitudinal waves in this case being waves ofmentum density. One route is to observe that pure transverse
changes in local tension—because the separation betweemotion of the string doesn’t lead to momentum in the direc-
masses never falls beloa) tion of propagation and so the assumption of pure transver-
Taking the usual continuum limit with these assumptionssality of string motion has to be dropped. Following this
and to lowest ordet??? (see Appendix Btransverse wave observation, several authors have argued that the string has
motion on the string is determined by the linear wave equato stretch in such a way that the instantaneous velocity of an
tion infinitesimal segment of string is always perpendicular to the
segment?~1*as shown in Fig. 2. If we assume this approxi-
mation to be valid(and we show later that it isn’t!then
doing a bit of geometry we find that t#s+—d»n/dx, and

where 7(x,t)=y(x,t) gives the transverse displacement of SiNCe|dn/dx|<1, we haved=—gzlJx. Consequentlyy,
the infinitesimal piece of string at positionas a function of (=d7/dt)=v cosfé=v and hence v,=v sinf=—(I7/dt)
time t, po is the equilibrium linear mass densityass per  X(97/dX). Thus the momentum density(we use lower case
unit length of the string, andr, its undisturbed tension. letters for densities and upper case letters for tpizasried
Equation(2) is the usual textbook equation and the wavePy the wave in thec direction is given by

X1 X; X1

(9277 07217 5
POZ =To s 2

velocity is given by an dn
- 9=PoVx= ~Po g o )
CT: - (3) . . .
Po [Note that we can neglect thismotion of string elements

where the subscript T refers to “transverse.” The discrete\"’helr:]| calcl:ul;’:ltir:jgtthe energyddergjsityn Eq. i“) t;ﬁcause Iilt
and continuum models are linked through the parameter@'Ou  only lead fo a second-order correc ign € sma
po=m/l and To=k(I—a). Note also that the derivation of duantitydz/ox) to the kinetic energy density term in]
Eq. (2) requires thatdn/ax|<1 An apparentlymore rigorous derivation of this result is

given by Elmore and Heal(Sec. 1.11 in Ref. ) who make

a detailed analysis of the forces acting on an element of

lIl. ENERGY AND MOMENTUM CARRIED BY THE string including the effects of stretching.

WAVE A third approach is outlined in Appendix A, where we

show that the canonical energy—momentum tensor con-

In this section, we present the standard expressions for the&ructed from the Lagrangian density of the problem leads to

energy and momentum densities carried by transverse wavéise identification of a wave momentum density given by the

on a string. In Sec. IV, we show that the expression for wavdormula forg above. In one sense, this is a remarkable agree-

momentum density leads to paradoxes and so must be incament. The Lagrangian density leads directly to E2). and

rect (at least in its interpretation contains no description of the longitudinal motion of seg-
Kinetic and potential energy is carried by the wave, withments of the string.

the kinetic energy part being due to the motion of mass ele- With all this agreement on the formula fgr what could

mentsém= py5x and the potential energy part being a resultbe wrong?

of the work done in stretching the string against {las-

sumed constahtension force. The total energy densfgn-

ergy %er unit lengthe carried by the wave is readily shown IV. “THE MYSTERY"

tob A. Parodox 1: Nonconservation of wave momentum
1 an\? 1 an\? . .
e==pol =| += 10| = (4) The first paradox arises from a study of a transverse wave
277\ ot 2 7\ ox travelling down a taut string which has a discontinuity in its

to lowest order. In the discrete model, energy is just the sunfinear mass density at=0 such thatp,=p; for x<0 and
of the classical dynamics kinetic and potential energies fopo=p, for x=0 (see Fig. 3 This is a well-studied
all particles and springs. problem?1%-1®hut one that can still surprise with its subtle-
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with similar expressions foE, , G,, E;, andG;. Substitut-
ing EQgs.(6) into these integrals and using the fact thgt
=p1C3=p,Cc3, we find that

-
1)
K=}

Ei=4p,CiIA? W, (8a)
— 2
c, Gi_4plcllAi/Wl (8b)
Gy ,E - 2[ A2
(b) —rer E,=4p,C3IA%w, (80)
Cq Gi,Et
G,=—4p.ciIA%w, (8d)
Fig. 3. Two strings with mass densitipg andp,, respectively, are joined
at x=0 and put under the tensiory. (a) A right-propagating wave pulse Et=4p2C102|At2/W, (8¢
travelling with wave speed; = /7y /p; is initially excited on the left string
segment. The total energy and total longitudinal momentum of this wave Gt=4P201|At2/Wa (8f)

pulse areE; and G;, respectively.(b) After reachingx=0, the incident . )
wave pulse generates reflectéatal energyE, and total momenturs,) and ~ wherel = [*_u? exp(—2u2)du= \/;/25/2. (In passing we note

transmitted(total energyE, and total momentun®,) wave pulses. that|GM| = EM/C//-’ w=i,r,t, ageneral result linking energy,
momentum, and wave speed for linear wat/é3)
Applying conservation of energ\g;,=E,+E;, and mo-

ties as we will show(We note in passing that all the follow- mentum,G; =G, +G:, to Eqs.(8), we find that

ing results also apply to compressional waves propagating Af 20%

along I’OdS). /? = C(C—+C)1 (93)
The surprise came when we looked at trying to calculate i =12

the amplitudes of the reflected and transmitted waves froma 52 . _.

consideration of energy and momentum conservation. We —— = -1 2 (9b)

. v o 2=
know from mechanics that the outcome of an elastic collision A7 €1t C2

between a mas#,, initially travelling with velocity vyi,  wjith the unfortunate result that &,>c,, thenA, is purely
with an initially stationary mas#/,, is completely deter- jmaginary—a nonsensical result!

mined in a one-dimensional interaction by conservation of What went Wrong? Well the usual way to find the reflec-
energy and momentum. Waves, like particlesjpposedly  tion and transmission coefficients is to apply the boundary

carry energy and momentum, and one would exjeaitvely  conditions thatz(x,t) and d7/dx be continuous ak=0.
as it turns out that conservation of energy and momentum-pis |eads t&%1*

would also help us determine the results of wave interac-
tions. Specifically, one would expect that the total energy ~A; C;—C;

and momentum carried by the transmitted and reflected A " ¢, +c,’ (103
waves would equal the energy and momentum of the wave

incident on the discontinuity. That is, from Fig. 3, tHat Ar 2¢ 10b
+E=E; and G, + G;=G;, whereG is the total momentum A_\i_ Ci+Cy’ (100

carried by a wave pulse ariis the total energy carried by

a wave pulse. The subscripts=i, r, andt refer to incident, These results used in Eg@a), (8¢), and (8¢) indicate that

reflected, and transmitted waves, respectively. E,+E=E;, i.e, that energy is conserved in the process.

Our results hold for the general case, but for definitenesdi0Wever, the momentum equatiofesh), (8d), and (8f)]
consider incident, reflected, and transmitted waves given b ve

i et 22 2(c—cC
ni(x,t)=Aje” X"l <, (6a) Gr+Gt=Gi[1+(l—2). (11)
2 (c1tCy)
_ —(x+cqt ; i
n(x,)=Ae" ¥ vV x<0, (6b) Consequently, wave momentum is not conserved!! Herein
nt(x,t)=Ate*<ci’°§)("*°2‘)2’wz, >0, 60 lies the “mystery” of the title. Ifc,>c,, we apparently lose

some momentum somewhere andcif<c, then we gain
respectively, where=0 has been chosen to be the time Some momentum from somewhere. It is important to realise

when the peak of the incident wave isxat 0. [The standard that Eq.(11) indicates a dramatic failure in the conservation
requirement imposed when deriving E@2), i.e., that of momentum law and not just some small error, associated

|anlax|<1, is thus equivalent oA, /w|<1.] with the small|d#5/dx| assumption for example.
The total energy and momentum of each of the three
waves is found just by integrating the densities given by Eqs.
4) anq (5) over the whole pulse at fixed times when the B. Paradox 2: Differential tension in string
pulse is well away fronx=0. Thus
If the longitudinal motion of an element of string is gov-

0 )
Ei:J € dxzf e dx, t<-—w/cy, (79 erned by Eq(5), then the total longitudinal displacemek§
—oo —o of an element of the string is given by

G fo d fw dx, t<—w/ (7b) AE 9 i J 019 44 (12)
L= . Xz . X, < —W C y = —_— = —_——_——— .
)AL : waredt O Juave 9t X
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where in our case, the two physical densities of interest are
energye and momentung.

In order to get completely general results, we consider
Egs.(2)—(5) with p, replaced byp(x), an arbitrary function
Fig. 4. A taut string is initially displaced transversally from equilibrium in of x.
the shape of a triangular waythe solid curvgand released from rest. This Following the procedure developed for the casepoh
results in waves with the same shape but half the amplitude travelling irconstant, the continuity equation for energy wipgs a func-
both the positive and negativedirections(dashed curves tion of x is found by multiplying the wave equation, E@),
by a5/t and then reexpressing the result in the form of Eq.
(13).71923The resulting continuity equation is given by

For a wave of the form given by Ed6a), Aé=4A2%1/w,

while for an identical wave travelling in the negatixedi- Jde P

rection,A¢ is the negative of this. EJr o
Consider now the case of a uniform long string plucked

locally at its centre and released from rest as shown in Fig. 4y nerec is given by Eq.(4) [with p, replaced byp(x)] and
As is well known from d’Alembert’s formula, this generates o \wave powerP. (enerav current or flux densitis given
two waves of the same shape but with half the amplitude o y P P ( 9y tys g

the original displacement, one propagating in the positive
and one propagating in the negatixalirections. Infinitesi- an dn
mal elements of the string which are initially displaced will, P=—1o——.

. . - ox ot
however, see different fractions of each wave and so will be

moved different fractions of the total displacemeNt e thus see that wave energy is conserved on a string with
caused by the passing of the whole of the wave. For exyarying mass density. Comparing this result with E).and
ample, the centre element at the point A shown in Fig. 4 W'”using Eq.(3) leads toP=c2g, indicating the close link be-
see half of each wave, and so will receive a net displacemerg\;veen momentum and enTeréy

of zero. Elements to the left of this will receive increasingly . momentum, on the other hand, the continuity equation

greater negative displacements while elements to the rig%henp is a constant has been shown to be obtainable by

\év)LI;rrnch):ltzlv?hgcg:aeﬁggtlya?rs ;tnetr goiﬂu'\:/:eg dfp\:ﬁﬁ esrggn,t“:‘)'ng?%ultiplying the wave equation byz/dx and then reexpress-
’ ' ing the result in the form of Eq(13).”1%%2When p=p(x),

quarter” of the left-travelling wave and “three-quarters” of Ing .
the right-travelling wave and so will be shifted “halfi¢to ~ NOWever, this procedure leads to
the right. Point C, seeing none of the left-travelling wave and gg b
all of the right-travelling wave, will, however, be shifted all — 4+ —=f(x), (16)
of A¢ to the right. at - ox

The above arguments lead to the conclusion that elemen\tﬁhere is given by Eq.(5): and the wave momentum flow
of the string will be left in a state of differential tension after B (mor%ent%m cur)r/en?.or ’flux densjtys, for linear waves '
the passage of the waves. This is just not physically possibl . ; X A '
(except maybe for a hypothetical string with zero Young,Sldentlcal to the energy density This equation isiota con-

modulug and so represents another mystery to be resoIved‘t,'nu'ty eq“"".“‘?!" howeve(, bﬁcaflse of the presence of the
force density” termf which is given by

V. PARTIAL RESOLUTION OF PARADOX 1 1dp
A. Continuity equations

The first mystery is concerned with the conservation ofgyom Eqs(16) and(17), we thus see thatave momentum is
otherwise of wave energy and momentum, so it makes senggly conserved when the string mass densityindependent
to determ!ne the relevant rr_lz_ithemaucal descriptions of thgg position x (More generally, any variability in the string
conservation of these quantities. o . properties, such asfor the case of a string hanging under its
_In general terms, a physical quantity is conserved if thesyn weight!® will lead to nonconservation of wave momen-
time rate of change of that quantity in an arbitrary volume iny, |n fact. for the case= 7(x), wave energy isn't con-
space equals the negative of the flux of the quantity througR,eq eithé) ’
the boundary surface of that volume. For physical quantities That the term on the right-hand side of E&i6) can in fact

that can be considered to be continuously distributed, thg)e interpreted as a force density acting on the wave can be

preceding statement can, \.Nith _the help of the divergen_cgeen as follows. Integrating E¢L6) on the string segment
theorem, be written as a triple integral over the volume ing - X=X, 10 X=X,, we find that

question?? Taking the limit as the volume goes to zero, we
obtain a differential equation, a so-called continuity equa- Xo
tion, which describes conservation of the physical quantity. —=b(x1)—b(x2)+f f(x)dx, (18
The general form of continuity equations, in one dimension, dt Xy

is

0, (14)

(15

(17)

which has the “physical” interpretation: The time rate of
change of wave momentum ¢, ,X,] equals the momen-
tum flux in atx=x; minus the flux of momentum out at
X=X, plus the total force acting on the wave in the interval.
We shall leave a more detailed discussion of the nature of
this “force” to Sec. VII.

J
E (density of physical quantily
d . .
+& (current density of physical quantjty 0, (13)
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B. Force on wave at the string discontinuity grated over the wave, is identically zero. After reading the
discussions in these texts, one is left believing tiat
(=fgdx) is in fact a real net momentum carried by the
wave. Gilbert and Mollow, however, show thaG isn't a
real momentum, as do other authérwho also show that
X G is the classical limit of phonon pseudomomentum, and
p(X)=p1t(p2=p1) 1 (19 phonons are well known to carry no real momentuiu-
merical simulations of the kind discussed in Sec. VIl verify
on the interva] 0,Ax] and taking the limit adx—0, we find  that for waves like Eq(6) (with 7 replaced by¢), the total

Going back to our original problem of a step discontinuity
in the mass density of the stringat 0, we model that case
as follows. Letting

that momentum carried by the wave as a whole is in fact zero, but
d that the pseudomomentu@is related to the wave enerdy
_p_>(p2_pl)5(x), (20) by the formulaG=E/c_, as predicted by the theory for
dx wave momentumThus G is a real property of such waves, it
where §(x) is the Dirac delta function. just isn’t the real momentum carried by the wave
Thus the total forcd= acting on the wave at any tirtds Since G is a pseudomomentum, its nonconservation on
given by reflection and transmission at a discontinuity in the mass

density of the supporting medium is, therefore, not a cause
for any concern, just a cause to be careful in interpreting
what is going on. Note also, that sinGeis a pseudomomen-
) ) tum, the force density found in Eq17) should be more
Using Eqs.(6), (8), and(10), the total change in momentum properly called a pseudoforce, and so the fact that there is no

2

°° 1 dn(0t
F= | to0dx-5 m—m(ﬂ (21

ot

given to the wave by this force is therefore reaction pseudoforce is therefore of no concern.
o 2(c1—Cyp) Of what interest is the wave pseudomomentGmthen?
AG=j th=m G, (22 First, as Gilbert and MolloW point out, it is, unlike real
—® 1 2

momentum, a nonzero integral of the motion. They also go

which is precisely the change in total wave momentum ren to show that i_f the wave is coupled to an external particle,
quired by Eq.(11)! then G behavedike a real momentum m_the sense th@at
Well that's a relief, but it begs the following question. If Plus the momentum of the external particle is a conserved
there is a force which acts on the wave at the discontinuityduantity, and usings rather than the centre of mass momen-
there must be a reaction force by the wave on whatever it j§4m may be more convenient in calculations, as is the case
that is applying the force to the wave. What is this thing thatvhen calculating the r(_asults of neutron—phonon scattering
the wave applies a force to? Lots of thought and calculatiofor €xample(remembering that phonons also only have a
reveals that it is nothing included in the current model, whichPSeudomomentumGurevich and Thellung also discuss the
is hardly surprising as this is a longitudinally acting “force” Value of the conservation of pseudomomentamgquasimo-
and some models, such as those beginning with a LagrangPentum as they call)in a homogeneous medium in both a
ian, have no longitudinal effects built into them. So the myS_nonlmear theory of elasticifyand a nonlinear theory of the

tery remains. interaction of light with mattef. Thus wave pseudomomen-
The resolution of this additional mystery, and paradox 2 agum is of considerable importance in the study of longitudi-
well, will be given in Sec. VII. nal waves.

As a final note of some importance for Sec. VII, we ask
the question: “Can a longitudinal wave in a solid ever carry
VI. AN IMPORTANT ASIDE—LONGITUDINAL a net real momentum?” The answer is “yes”—but the wave
WAVES IN A ROD is not of the conventional type in which the medium is left
unchanged after the wave passé=or the discrete case of
The astute reader may have noted at this point that thmasses connected by springs, a conventional wave returns
equations describing longitudinal waves in rods are just th@ach mass to its original positigrior a longitudinal wave to
same as those for transverse waves on a sfiwith the  carry a real net momentum, it must be set up so that the
Young's modulusY times the cross-sectional ar€aeplac- passage of the wave leaves each mass displaced from its
ing the tensionr, ¢t becomingc, = +SY/p, and the trans- original position>"?°Such a wave carries a real net momen-
verse displacement being replaced by the longitudinal dis- tum because it involves the transfer of mass. In this case, the
placementf) and so may be wondering if there is a similar momentum carried by the wave is still not given Gy but
problem for those sorts of waves as well. It turns out thatather by [, g0¢ dX.
there isn’t a problem, but there are some misleading discus- For this special “mass-transferring wave” case, the
sions in the literature. o _ reflection-transmission problem for longitudinal waves can
For longitudinal waves, both the continuity equation andindeed be solved using conservation of energy and momen-
Lagrangian field theoretic approachese Appendix Alead  tym. The interested reader is referred to Section 7.3 in the
to a wave momentum density given by H) (with »re-  pook by Ingard®
placed by¢). Discussions in classic texts on mechanics such
as Goldsteiff and Corben and Stehfé interpret the wave VII. NUMERICAL SIMULATIONS—AND A
momentum density as being due to an “excess density’” COMPLETE RESOLUTION OF THE MYSTERY

= —podé/dx moving with the local displacement velocity  we now report on the results of the numerical simulations
délat, correctly noting that for waves whiofpossibly peri-  and see how they lead us to the resolution of the paradoxes
odically) return the particles of the medium to their equilib- presented above and the correct formulation of wave theory
rium positions, the momentum densijtydé/dt, when inte-  for this problem.
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Fig. 5. Simulations for a string with/lI =0.95 and the normalizations used are defined at the start of Sec. VII A. The equilibrium positions of the point masses
making up the lattice are at integer valuesxobn theX axis. The right end of the lattice is held fixed in place while the left end is given the displacements:
E(— 150,t_) =0, (- 150,t_) =0.1H (t_) —-H (t_— 120))expe((t_—60)/25)2) in normalized units. In this expressidﬁ(t_) is the Heaviside step functiofe) Plot

of the transverse displacemeﬁ(Y,ZSO) at timet =280, showing that a transverse Gaussian wave pulse has been set up on the string travelling at the

normalized wave speet}=\1—a/l =0.2236, as predicted by the standard thed@yA plot of the longitudinal displacemenfs{Y,ZBO) of each mass in the
lattice at the same time as (). Observe that there are two longitudinal waves, a fast purely longitudinal precursor wave travelling at the normalised wave

speedc, =1, and a slower longitudinal wave copropagating with the transverse @wdotion of the mass aK= — 110 showing the normalized transverse
vs longitudinal displacements of this mass. The L wave arrives first and shifts the mag®{®pio (—0.0011, 0 and then when the T wave arrives, it shifts
the mass fron{—0.0011, 0 to (—0.000 59,0.1 and thence back t(0,0). This mass was chosen so that the L and T waves had completely separated by this

value of X (for earlier values oiX where the L wave and T wave are still partially coincident, the motion of masses are more complicht&dot of
normalized longitudinal momentum densﬁys d¢&lat as a function oiX at timet=280. The graph of- (1/2) (d5/ 9X)(d5l/ t) is indistinguishable from the
graph ofé for the T wave.

A. Simulation results transverse wave is a longitudinal wave travelling with the

The numerical simulations were run on a HP server usin speedc,_z V(ka+ TO.)/pf?' For the e'xample given in Fig. 5, .
MATHEMATICA %6 3.0 to solve the coupled differential equa- %EElg{ﬁggr_sgrolgff'Bﬁ,{'g?(l)vtvﬁgel’eg'sagai‘tcefoag tgttee;nasses n
tions given in Eqs(1) for N particles and suitable boundary Figure 5b) lalso shows that there is a ﬁ)n pitl?dinallmotion
conditions. The equatio_ns were first r_u_)rr_nalized S0 that dist_:opr%pagating with the transverse wave 9I'his longitudinal
:aZZistﬁéemS:izg Vrverizﬂv;]:psttr:;ge ?suglgggrm a ?epr?;jlgngn%e motion is such as to return all the masses back to their equi-
. . . ... librium positions. The combined effects on a single particle
time relative tom/k, wherem is the standard mass. With of the precursor longitudinal waughe “L wave”) and the
these normalizations, the mass density of a segment of Strir}gailing (mostly) transverse “T wave” are shown in Fig
with standard masses is one unit, and isits on a segment 5(c) '
of string wherem;=rm. The normalized longitudinal wave y

; . X . . Now looking at the longitudinal momentum density profile
velocity on a section of string with standard masses is thugpown in Fig. &d), we see that the precursor longitudinal

¢ =1, and 14r on a section of string with mass density  wave is carrying a negative momentum, whereas the trans-

The normalized tension in the string#=(1—a/l),’ and  verse wave via its accompanying longitudinal component is

so the normalized transverse wave velocity is givenchy carrying a positive momentum in thedirection. Both of the

=+ (1—all)lr. longitudinal waves do carry a real momentum because they
As our first example, we considered setting up a transversmove mass as discussed at the end of SecWe note here

wave on a uniform spring—mass lattice under tension byhat precursor longitudinal waves have been observed in

moving the left-hand end vertically up and down in a smoothstruck piano strings—see Refs. 28 and 29 and references

fashion(a Gaussian in timewith the right-hand end of the therein—though these workers have not been interested in

lattice held fixed in place. As can be seen in Figg)5a  the momentum carried by these waves.

Gaussian transverse wave is set up which propagates as ex-Comparing the momentum density of the “transverse”

pected at the standard speedfor such waves. wave with that predicted by the standard formula given by
However, the surprise comes when we plot the accompakgg. (5), we find that the numerically determined momentum

nying longitudinal displacement of the masses in the latticalensity as a function of position is precisely one-half gtof

as shown in Fig. &). The results indicate that preceding the Eq. (5)!!*° This refines a statement by Juenker that the mo-
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mentum carried by a wave depends on the relative admixtur€. Resolving paradox 2
in the wave of what he calls shape and density waves. We . . .
would say rather that the total wave consists of a part which We are now in a position to resolve paradox 2. First we
is purely longitudinal(the L wave and which propagates note that itis true that a transverse wawoesshift each

with the wave speed, , and a partthe T wave that is a element of string away from where it found it and in the
mixture of both transL\;erse and longitudinal displacementéjlreCtlon of propagation because it is indeed accompanied by

L longitudinal wave. However, because the generation of a
but which is mostly transverse and travels at the wave speegd : S L

y trar S e ansverse wave necessarily generates another longitudinal
cr. The T wave carries a total longitudinal momentum

. T wave which separates off moving at spegdand which
KT/CT (I.(T is the total kmetllc energy of the [ransverse mo- g igq every element of string it meets in the opposite direc-
tion) while the L wave carries a total momentum which de-

d how th ted and on th ion to its propagation, the net effect of the passage of both
pends on how the waves are generated and on the parameigl s js to leave each element of string back in its equilib-
a/l. (By total momentum and kinetic energy, we mean theyjm nosition. Thus there is no differential tension set up in

total sum of the momenta or kinetic energies of all the parype plucked string example of Sec. IVB after both of the

ticles involved in egch wave in the discrete model, whichysyes have passed by, as verified by further simulations.
corresponds to the integral over the wave of the momentum

density or kinetic energy density in the continuum model. ) _
D. Understanding the waves involved

B. Two subtle points In summary then, simulations of the type shown in Fig. 5
First, we have seen from Fig(l§ that the L wave shifts Show that when we try to set up a transverse wave on an
masses to the left of their equilibrium positions and the suc€lastic string, we in fact generate two waves which travel
ceeding T wave shifts the masses to the right. Referring backidependently of each other. The faster of these waves trav-
to our discussion at the end of Sec. VI, it is thus apparent that!S With the speed, and is a purely longitudinal mode of
both the L wave and the T wave considered individuallyVibration. For convenience we shall refer to this wave as an
carry net longitudinal momenta. We have also seen that thel wave.” The slower of the two waves generated travels at
longitudinal momentum carried by the T wave is related tothe speedy and includes both longitudinal as well as trans-
the transverse motion of the string through the relatin  verse motion of the particles. Since the dominant motion is
= — 1 wavd 1/2)pon’ 7 dx. What of the total momentui@,  transverse and the wave travels at the transverse wave speed
carried by the L wave, though? At first sight, one migint ~ Cr. We call these waves “T waves.(Note that our L and T
the case studied herexpect it to carry an equal but opposite Waves are a bit like the P and S waves of seismology, al-
momentum to the T wave, as the passage of both wave§ough since the T wave has both transverse and longitudinal
leaves each mass back at its starting position. However, b&omponents, it is perr;?ps more akin to the Rayleigh surface
cause the L wave and T wave travel with different propagaWwaves of seismolog§”*'L and T waves as we describe have
tion velocities, the longitudinal motions in each are frgc- I fact been posited before in a theoretical analysis by
essarily mirror images of each other, and so the overallBroer;”though the work of this author does not appear to be
momentum need not be zerfdor the example given here, Well known) _ _
the overall longitudinal momentum is in fact negative, be- Why is there an L wave associated with the T wave,
causeG, = —(c, /c7) G+ for the way these waves were gen- though? Well, recall th_at stretching or “compre§S|n(;1ttq-
erated) This is to be expected—the net longitudinal momen-ally relaxing the tension inthe string longitudinally will
tum carried by both waves must depend on the longitudina@enerate a longitudinal wave in the string. Consequently,
forces and speeds used to generate the initial wave. since moving th_e left-hand end of _the string ver'glcally up-
This is a subtle point: Note that moving the leftmost masgvards necessarily stretches the string, doing so inescapably
in our string vertically stretches the spring between it and itgenerates a longitudinal wave along with the transverse
neighbouring mass, and so it exerts a pull on this mass, i.eVave. _ _
there is a longitudinal or negativedirected force on the From Fig. gc), we see that our Gaussian T wave shifts
second mass in the chain. Thus the total longitudinal impuls€2ch mass in the lattice to the right as well as up and down.
given to the chain by the transverse motion of the leftmosOne might presume therefore, that moving the left-hand end
mass in the chain is given by [ ((t) — 7o)dt, wherer, is of the lattice to the right in just the correct way when moving

the x component of the tension in the leftmost spring in theithulo and dFown, Sr?O“Id pr(();_jaca T wave (;]nly. Thisis in faﬁt
chain. Evaluating this impulse numerically for the motion the case(From the preceding paragraph, we can see that a

used to generate the waves shown in Fig. 5, we find that jpure T wave will be generated if the string is moved trans-

agrees, as expected, wilm:x. , the total longitudinal mo- versally and to the right so thf;lt the string is never
mgentum carri erz)d by bothm;'h el Ll wave and th egT wave. stretched—see Appendix B)2What's the correct way to

The second point that we wish to make is that the alerfnove the lattice to the right, though? Well, the simulations

reader may also be wondering why the T-wave component O§_how that the longitudinal velocity profilef @ T wave is

Fig. 5(d) is asymmetric. This asymmetrisation of the T wave given byg/(gpo), So we should move the lattice to the right
is due to dispersion, which is of course not included in clas\Vith @ velocity which matches this, i.e.,
sic string theory. Since classic string theory is justthe long  g9¢ 1 [d7y)\2
wavelength limit of our model, however, this effect can of 9t 2c- (E) ,
course be reduced by making the pulse broader, but only at T
the expense of longer computational tim@¥otice also that whered#/dt is the time derivative of the transverse displace-
becauses, >c, the precursor longitudinal wave is broader ment given to the left-hand end of the lattig&ote that
than the transverse wave, and asymmetrisation due to dispdrecause this formula has to be evaluated at the left-hand end
sion is not yet visible in i. of the lattice, thed 5/ dx in the formula forg had to be trans-

(23

384 Am. J. Phys., Vol. 67, No. 5, May 1999 D. R. Rowland and C. Pask 384

Downloaded 08 Apr 2013 to 129.241.49.215. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



formed to— (d#/dt)/cy, assumingyp=f(x—cqt) is a valid  in string tension when deriving the transverse wave equation

solution. A theoretical discussion leading to E2@) is given  [Ed. (2)], these changes in tension are of crucial importance

in Appendix B] when it comes to the analysis of longitudinal momentum.
We observe that the motion of the left-hand end of the

string _needed to produce a pure T wave in the fo_rm of a5 Seeing it all mathematically

Gaussian pulse is shown by the T-wave part of Fi@).5

Note that since this wave shifts masses to the right of their With the results of the simulations to guide us, we can

equilibrium position, it carries a net momentum. now see how the continuum wave equations can lead us to

the same conclusions. In the continuum limit, the appropriate

wave equations for the transversgx,t) and longitudinal

&(x,t) displacements of the string a(see Appendix R

We can now address paradox 1: why wave momentum P2 P

(which is the momentum carried by the T wave not con- 7 7

E. Resolving paradox 1

2

: C : ; — 7 =Ci 7, 24
served at a discontinuity in the mass density of the string and ~ dt* T dx? 249
where thg “force”f in Eq. (16) comes from: It is now prob- ey ¢ om 5P
ably obvious from the preceding discussion tligt) wave _2202_2+(C2_C2)_’7 _’27 (25)
momentum is not conserved at a discontinligcause the at Lox LT ox ax

element of string at the discontinuity cannot simultaneousl
move so as to produce a pure T-wave for both the reflecte
and transmitted wavesnd thus new L waves are generated
at the discontinuity. The “force density” in Ed16) is thus n(X,t)="f(x—cqt). (26)
seen to betwice) the force the L waves generated at the : : _ :
discontinuity apply to the T waves generated at the discon_l_Equat_lon(ZS) says th_af will be a parth(x c,_t)_propagat
tinuity. This is verified by simulations. ing WIt.h thellongltudlnalll speed, plus a part driven l_ay the
term involving ». This latter term we can write as

g(x—cst). Thus

quation (24) is the standard equation and we consider a
avelling wave solution

F. Special case—the;=c| limit

§(x,t)=h(x—c t) +q(x—cqt). (27)
From Appendix B, we see thaty=c_ when a=0, or - . : _
equivalently, whenSY=0. This condition is approximately Substltgtlng Egs(26) and (27) into (25) and puttingu=x
. : ; . —c+t gives
met by the Slinky spring which has effectively a zero relaxed
length32=34In this case, the T wave and L wave travel to-  d?q df d?f
gether. Thus in the situation discussed above where awave is gz~ ~ gu du2’ (28)

excited by moving one end of the Slinky transversely, the L

wave moves particles to the left and the T wave puts thentvhich integrates to
back again simultaneously, thus resulting in ?ﬁéatére_ly trans- dq 1/df\2
verse motion of the elements of the Slinky sprmg? Since — = | —

the particles in the spring move purely transversslych a du 2 \du

wave Ca!’rles nq |0ngltudlnal mom_enturTThIS can be If we mu|t|p|y by PoCT, this equation is equiva|ent to
checked in the simulations by reflecting such a wave off a

heavy particle placed at the opposite end of the Sliri&y. Jq 1 of of 1 dnadn

course, a wave with longitudinal momentuwran be gener- POt =T 2P ax - 2Pt ax (30

ated in a Slinky by also moving the wave generating endThus we see that the momentum carried by the longitudinal

longitudinally as well as transversely. dri ed by the t :
Before we finish this special case, we'd like to look at anWaV€ driven or accompanied Dy the transversevave IS

argument put forward by PieréeHe states that it can be €xactly (1/2], as revealed by the simulations. _

seen that a transverse wave on a string carries longitudinal Thus our theory neatly confirms the general behavior de-

momentum by the following argument. When a transversgluced from the simulations—namely, that the motion of a

pulse is reflected off a fixed end, the string makes an angle 8{fing involves a transverse wave and two longitudinal

the wall. The component of the string tension in the longitu-waves, one travelling with speeq and the other travelling

dinal direction is thus less than it was when the pulse was ndegether with the transverse wave at spegd The connec-

present(assuming the tension in the string to be unchangedion between the real momentum of the T wave in the

by the presence of the pulseThis reduction in tension is direction and the “momentum” derived for transverse waves

equivalent to a force against the wall and this force is due tés now very clear and Eq25) shows that there is a genuine

the momentum carried by the wave. link, not some mere coincidence, as the transverse waves
The error in this argument is easily seen in the=c, ~ May be seen to drive a longitudinal wave.

limit. Using the model described with Eg€l) in this case

for a purely transverse wave, it is easily shown that there isH Relative magnitudes and importance

an increase in the string tension due to the wave, and that this

increase in tension exactly compensates for the angle that the One last question remains though, and that is why aren't

string makes to the fixed erfd Thus in this case, there is no these results already well known? The answer has to do with

change in the longitudinal component of tension as the pulsthe relative size and importance of effects. First the relative

gets reflected from the fixed end, and so the wave carries ngize.

longitudinal momentum as stated above. We conclude there- The total transverse and longitudinal kinetic energies in

fore, that while itis a valid approximation to neglect changesthe waves are given by Kr= /1 wavd 1/2)po7? dx

(29
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==,(1/2)m, ,7]2 and K. =S waverL wavd 1/2)po&2dx  then used numerical simulations of an ideal stripgrfectly
flexible with linear elasticityto resolve the paradoxes and to

5_21(1/2)mj'§j2, respecti\iely. For the simulation shown in guide our theoretical analyses.

Fig. 5, K| /Ky=2.3X10"", and thus the amount of energy ~ The conclusions of this work are as follows. One can',
carried by the longitudinal motions cogenerated with theexcept in the case wher) =cy, excite a purely transverse
transverse motion is negligibly sma(ldaxceptr\évhen magni-  ynjdirectional wave on an elastic string; longitudinal waves
fied by the sound board of a musical instrunf@nprovided ;e inescapably generated as well. However, for finite wave

all_youTﬁr? _intterested_fin is the rran?vers$ dmOtitc;]n (t)f thepises(except in the case when =c;) a pure L wave wil
string. That1s 1o say, IT oné IS only Interested in the rans'separate from what we da T wave, a wave which propa-

\t/)igsf ewxg\r{ne :Egt:aorg gfn}h?nfgr'gggg fphaetr:str\:(\; hs;ugff(;rtr?ﬁt—- gates with unchanging shape at the standard transverse wave
P y y velocity cr. The dominant motion associated v T wave

lae for the transverse wave equation and for the amplitudes . X N
of the transverse waves reflected and transmitted at a discol?b'[nrggf\\/;ﬁfﬁ erjé\'/tl daelzoﬂ']r;d%?]e?tf dﬁqrgfilrlnlc?%%mgmagf?g-
tinuity in the string’s mass density are all perfectly adequate.p P 9

If, however, one wants to know anything about IongitudinaIW;\g:,, wa?ggnthvﬁ\elifer?sr%ﬁ);%ﬁ;z gixsiztéﬁég%;gie;%aeﬁs'
motion of the string, such as the momentum carried by th S X
string in the direcq[ion of propagatiorthen a fully self)( and Broer*® The longitudinal momentum carried by T waves

consistent theory must include all of the effects we have bedfi found numerically t,O, b&=Ky/cr, with the momentum
talking about densityg= —(1/2)pgn’' . This momentum was also shown _
Now the relative importance. Since the momentum carried® Pe a real momentum, not just a pseudomomentum as is
by transverse waves is so small, and most of the questions §ften found with longitudinal waves. On the other hand, the
interest can be answered without recourse to momentuntotal longitudinal momentum carried by the L wave depends
wave momentum has not received a lot of attention and ha@n how the waves are generated and on the physical param-
hitherto been mostly of theoretical interest. And since theetera/l (or equivalently onSYand r5). We have also pre-
problem can’t be solved exactly analytically, many previoussented_ new_theorgtlcal arguments to support the results of the
theoretical treatmentsyithout the support of simulations humerical simulations. These results confirm and extend the
have made errors in their underlying assumptions. Wave mcanalyses of Broéf and Juenkef. _
mentum may remain to be of theoretical interest for trans- Further, we have discovered that it is possible to generate
verse wavesbut it's good to get that theory righiithough it~ in the simulations a pure T wave at one end of a string.
is receiving increased attention for longitudinal waves inWhen this wave hits a discontinuity in the mass density of
nonlinear application§:° It should also be noted that precur- the string, L waves are generated in addition to the transmit-
sor longitudinal wavesare of importance in creating the ted and reflected T waves. The energy of these L waves is
characteristic tones of the various stringed musical instrusmall in comparison to the energy of the T waves, so to a

ments because of the magnifying effects of the sound board§st approximation, they may be ignored and the standard
of these instrument results for the amplitudes of the reflected and transmitted

transverse waves hold. The L waves assentialhowever,
for the total momentum of the system to be conserved, and
VIIl. CONCLUDING DISCUSSION their generation leads to the force density termin (E[ﬁ). L
waves are also necessary to resolve the differential tension
We have discovered that with regard to the concept of theParadox” of Sec. IVB. o ,
longitudinal momentum carried by a “transverse” wave on a__ Finally, what now is the status of the continuity equation
taut string, the literature is confused and contradictory. It i(16) and the energy—momentum tensor given by &#)?

widely claimed, e.g., Refs. 10, 12—14 that the wave momenYVell, neither give theictualmomentum density carried by T
tum density is given byg=—po(dn/dx)(dnldt)=—p,  WAVES, though both, with a care for interpretation, can be

X 7' 7 or equivalently that the total momentum carried by used as valid calculational too{see Secs. IVA and IVB

the wave is given bya=E/c,, whereE is the total(kinetic It might be fitting to conclude with some words from The

. T s Master, Lord Rayleigh:
K plus potentiall) energy carried by the wave. This is also . o )
the wave momentum given by the canonical energy— [32,Vol.l, Chap. Vl. “Among vibrating bodies there are
momentum tensor when transverse motion alone is consid- hone that occupy a more prominent position than
ered. Juenket,on the other hand, claims that the answer Stretched Strings. From the earliest times they have been
depends on the properties of the string and on how the wave €mployed for musical purposes.... To the mathematician
is initiated. He considers explicitly two examplds: waves they must always possess a peculiar interest as a battle-
on a rope-like(i.e., inextensiblgstring, for whichG=K/ct field on which were fought out the controversies of
and (i) waves on a Slinky springfor which ¢, =cy) for D’Alembert, Euler, Bernoulli, and Lagrange relating to the

which the relationship between energy and wave velocity nature of the solutions of partial differential equations. To
depends on the relative admixture of L and T wavesr the student of Acoustics they are doubly important.

terminology in the wave. Broér also posits the existence of We trust that the smoke is now clearing from the battle over
what we call T waves, and shows that for these wa@s, stretched-string wave momentum propagation.
=K/cy, noting their correspondence to waves on an inex-

tensible string.Implicit in Broer's analysis is that for T APPENDIX A: LAGRANGIAN PERSPECTIVE
waves,g=—(1/2)pon’ 7.

We have attacked a resolution of the confusion on several This Appendix follows GoldsteiiRef. 22, Chap. 12 and
fronts. First, we showed that assumigg — po7’ 7 and ne-  for notational convenience we introduce the following sub-

glecting what we've called L waves led to paradoxes. Wescript notationxo=t, x;=X, 7 ,=dn/dx,; the greek sub-
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scriptsu, v will take on the values 0 and 1; and the Einstein APPENDIX B: THREE DERIVATIONS OF THE
summation convention over repeated subscripts will be ascORRECT FORMULA FOR WAVE MOMENTUM
sumed. ] )

Consider a general Lagrangian density with the functionall- Via the coupled wave equations

dependence&l=L(7,7,,,X,), v=0,1. Taking the total de- A more accurate set of equations governing the propaga-
rivative d£/dx, and using the Lagrange equations of mo-tion of waves on a taut string than E@) can be found by
tion, Le., taking the continuum limit of Eqg(1). In Egs.(1), (X;.y;)
d | or o are the spatial frame coordinates of the mags whose
)_ =0, (31 (assumed fixedmaterial frame coordinates ar¥;(0). Let-
dx, \dn,/ dn ting (¢;,7;) be the relative displacement coordinates of the

the following two 2-divergences for the energy—momentum{nassmjlg theméizxj +d§j anlgyjz 7; - ngn(tjmg_ll_zqsl.(l) n.
tensorT,,, for the field may be derived: erms of£; and ; and making second-order Taylor series

approximations,

AT L (32 Xjo1=X 21+ &= g1+ 1 12, (379
dx, X,
Yiz1=mn =9l + 3 773"2, (37b
where i
we find, to lowest order, that
oL e " ron
=5 ™ L (33 poé=(SY+70)&"+SYn' 7", (383
_ poir=1on"'+SY(3 7' ?n"+& 7'+ n' &) =1o7",
andé,,, is the Kronecker delta symbol. (38b)

From Eq.(4), we can see that the Lagrangian density for

transverse waves on a stretched string is just where po=m/l, the equilibrium mass density of the string;

To=Kk(l —a), the equilibrium tension in the string; arglY
L= %Po??zo— %707,21_ (34) =ka is the product of the cross-sectional arfgand the
’ ' Young's modulusy of the string.(Note that these equations
Thus Toe=(dL/dn ) 70— L=¢€, the energy density of the differ from those proposed in Refs. 10 and 14, but are be-
wave; To,=(JdL/dn ) no=—Tom1m0, the energy current lieved to be the correct equations by virtue of their agree-
density (powed of the wave;T;o=(3L/dn ) n1=ponine MeNt with the numerical simulations. They are also consis-
=—g, the negative of the momentum density of the wavel€Nt, when the approximationgy’|<1 and |¢'[<1 are
and Ty=(3L/dn ) 71— L=—e, the negative of the mo- made, with the equations derived by Morse and Intfsirda
mentum current denéity of the wave. treatment of the nonllnear effects experlen(_:edehge am-
The two-divergences, Eq32), thus lead in this case to Plitude waves propagating along ideal strings. We stress,
(going back to our normal notation for clarity though, that Fhe importance of these equations with regard to
the longitudinal momentum carried by small amplitude
de(x,t)  IP(x,t) or waves was not realised by these authors.
+ =— (35 Equation(38b) is of course, the standard transverse wave
equation for waves propagating at the wave spegd
=\/79/po. When n—0, Eq. (389 reduces to the standard

ot ax ot

and . o
wave equation for longitudinal waves on a taut sttthg
ag(x,t) db(x,t) L propagating with the wave speeg=(SY+ 7y)/po- Note
T Tax ax (36)  that the tension increases over its value for longitudinal

waves in an unstressed solitllote also that Refs. 10 and 14

where we have introduced the symlgk,t) for the momen- make the approximatiort, =\SY/py, assuming thatr,

tum current density(Note that for linear waves in a disper- <SY.)

sionless mediumh=¢, but this result is not true in general. As an aside, and tying up a loose end from the discussion
These equations are basically Eq$4) and (16) from the  in Appendix A, using Eqs(37) in the model which gives Eq.
main text, and we thus see that energy will be conserved ifl), we find that the Lagrangian density for the stringlud-

the Lagrangian density is explicitly independent of tilpe ing the effects of longitudinal stretching given by

and momentum will be conserved if the Lagrangian density a2
(1+§/)2+ 7]/2_ I_)

(39

is explicitly independent of positior. Thus from Eq.(34), L= E po( &2+ %) — E Kkl
we see that ifp=p(x), energy will be conserved but mo- 2 2
mentum will not, a point alluded to by some auth&rs>but 1 (B D)= (SY+4 1)
not discussed in any detail. Note also that with p(x) in =2pol&7H )2 70
Eq. (34), Eq. (36) reduces to Eq(16) in the main text. Sy \2

Finally, it should be emphasised that the Lagrangian in Eq. X|V(1+ )2+ 5%~ Svr o ) .
(34) is the one that leads to the standard transverse wave 0
equation. A symmetry property—invariance under spacevhere the field variable§ and » are considered to be func-
translation—leads to a quantity which is labelled “momen-tions of the independent variables tihend material coor-
tum.” However, the link to the concept of momentum asdinate X. Applying the Euler—Lagrange equatiéhgo Eq.
used in dynamics is not explicitly made in this theory. (39, and making our usual approximationg’|<1 and
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