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Lecture notes 12

12 Magnetic moments. Spin
The hypothesis about the electron spin (intrinsic angular momentum) was pub-
lished already in 1925 by Uhlenbeck and Goudsmit, almost at the same time as
the discovery by Heisenberg and Schrödinger of quantum mechanics and Pauli’s
formulation of the exclusion principle. The main experimental clues leading to
the spin hypothesis were

• the fine structure of optical spectra

• the Zeeman effect

• the Stern–Gerlach experiment

All these effects involve the behaviour of a particle with spin and/or orbital
angular momentum in a magnetic field.

In section 12.1 in these notes, we begin by considering the magnetic moment due
to the orbital motion of a particle, both classically and quantum-mechanically.
We then review the experiment of Stern and Gerlach, which clearly reveals the
intrinsic angular momentum (spin) of the electron. We also give a survey of the
spins of other particles.

In section 12.2 we establish a formalism for spin 1
2
, based on the general discussion

of angular momenta in Lecture notes 11.

12.1 Magnetic moments connected with orbital angular

momentum and spin

12.1.a Classical magnetic moment

(Hemmer p 178, 1.5 in B&J)
First a little bit of classical electrodynamics.
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In electromagnetic theory (see e.g. D.J. Griffiths, Introduction to Electrodynamics, chapter
6) one learns that an infinitesimal current loop, placed in a magnetic field, experiences a
torque

τ = µ×B (T12.1)

and a force
F = −∇(−µ·B). (T12.2)

Here µ is the magnetic (dipole) moment of the infinitesimal current loop. For a planar
loop encircling an area A this magnetic moment is

µ = I A n̂ ≡ IA,

where I is the current and n̂ is the unit vector perpendicular to the loop plane.
The same effect is observed when a magnetic needle is placed in a megnetic field.

The needle experiences a torque

τ(α) = −µB sinα = − ∂

∂α
(−µB cosα) = − ∂

∂α
(−µ·B). (T12.3)

Note that this relation is analogous to Fx(x) = −∂V/∂x. Equations (T12.2) and (T12.3)
show that the magnetic moment placed in the magnetic field B corresponds to the interaction
energy

Eµ = −µ·B. (T12.4)

This potential energy is by choice equal to zero when Eµ is perpendicular to µ ⊥ B, and
is maximal (and positive) when µ and B are antiparallell. The energy has its lowest value
when µ is parallell to B; this is the orientation preferred by the needle.

Another example: The figure shows a particle with mass m and charge q (< 0) which is
kept moving in a classical circular orbit by a central field V (r). This constitutes a current
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loop. With the radius r, velocity v and revolution frequency ν = v/(2πr) the current is
I = qν. This results in a magnetic moment

|µ| = I A = q
v

2πr
πr2 = 1

2
qrv = 1

2
q |r× v|.

Thus the magnetic moment due to the motion of the charge is proportional to the orbital
angular momentum L = m r× v :

µL =
q

2m
L. (T12.5)

The ratio q/2m between these two quantities is known as the gyromagnetic ratio.
Let us add that for this kind of classical motion the angular momentum L and the

magnetic moment µL are not constants of motion when B differs from zeo. According to
Newtons 2. law and equation (T12.1) we have that

dL

dt
= τ = µL ×B = − q

2m
B× L ≡ ωL × L. (T12.6)

From this equation it follows that L (and hence µL) precess. The precession frequency,

ωL ≡ −
q

2m
B, (T12.7)

is known as the Larmor frquency.

With these classical considerations in mind, let us see what quantum mechanics has to say
about these things.

12.1.b Magnetic moment due to orbital motion — quantum-mechanical
treatment

From the classical relation (T12.5) we see that the quantum-mechanical operator correspond-
ing to the observable µL (the magnetic moment due to the orbital motion) must be

µ̂L =
q

2m
L̂ =

q

2m
r× p̂ (T12.8)
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for a particle with mass m and charge q. As an example we may consider the “doughnut”
state

ψ211 = −(64πa5
0)−1/2 r e−r/2a0 sin θ eiφ

for the hydrogen atom. This is an eigenstate of L̂z with eigenvalue h̄. According to (T12.8)
it is then also an eigenstate of

(µ̂L)z =
−e
2me

L̂z,

with eigenvalue −eh̄/(2me). (In this example we neglect the difference between the electron
mass and the reduced mass.)

It is instructive to cosider this example more closely. The probability distribution
resembles a doughnut and is of course time independent, as is the case for all
stationary states,

ρ211 =
1

64πa5
0

r2er/a0 sin2 θ.

Inside this doughnut there is a probability current. This can be calculated from
the formula for the probability-current density:

j = <e

[
ψ∗ h̄

im
∇ψ

]
; ∇ = êr

∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ
.

Here we observe that the components of the gradient in the r- and θ directions
give imaginary contributions to the expression inside the brackets, and hence
no contribution to j. Thus the probability in the doughnut is flowing in the φ
direction. We find that

j = êφ
h̄/me

64πa5
0

r e−r/a0 sin θ = êφ ρ211 ·
h̄

me

1

r sin θ
.

Defining a velocity by the relation j = ρ211v, we can calculate the local velocity
of the probability current:

v =
|j|
ρ211

=
h̄

me

1

r sin θ
= αc

a0

r sin θ
.

Here, r sin θ — the distance from the z axis — is of course typically of the order of
the Bohr radius a0, so that the velocity is of the order of αc, as could be expected.
Note, however, that this velocity is variable; the probability distribution is not
rotating around the z axis as a “solid” doughnut.

The probability ρd3r in the volume element d3r corresponds to a momentum
contribution ρd3r · mv = mjd3r and an electric-current contribution −ejd3r.
Since 〈p 〉 is real, the former also follows from

〈p 〉 =
∫
ψ∗ h̄

i
∇ψ d3r = m

∫
<e

[
ψ∗ h̄

im
∇ψ

]
d3r =

∫
mj d3r.

The expectation values of Lz and (µL)z can be calculated in a similar manner,
and the results are as expected: Because (r× êφ)z = r sin θ, we have

〈Lz 〉211 =
∫
ψ∗211

(
r× h̄

i
∇
)
z

ψ211d
3r =

∫
(r×mej)zd

3r

=
∫
rmej sin θ d3r =

∫
h̄ρ211d

3r = h̄,
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and

〈 (µL)z 〉211 = 1
2

∫
[r× (−ej)]zd3r =

−eh̄
2me

∫
ρ211d

3r =
−eh̄
2me

, q.e.d.

This example illustrates the connection between the orbital angular momentum
and the magnetic moment of a moving particle.

As illustrated by this example, the operator relation (T12.8) implies that the magnetic
moment µL due to the orbital motion is quantized in the same way as the orbital angular
momentum. This means that the size and one of the components can have sharp values
simultaneously. For an electron (with q = −e) this implies that the size can take the values

|µL| =
e

2me

|L| = µB
√
l(l + 1) ; l = 0, 1, 2, · · · , (T12.9)

while for example the z component can take the values

(µL)z = − e

2me

Lz = −mµB ; m = 0,±1,±2, · · · ,±l. (T12.10)

Here the quantity

µB ≡
eh̄

2me

(1 Bohr magneton) (T12.11)

is the natural unit for the magnetic moment for the elctron, just as h̄ is the natural unit for
angular momenta. [1µB = 5.788 · 10−5 eV/T(esla).]

We note also that the quantization of Lz and (µL)z corresponds to a so-called space
quantization, that is, quantized values of the angle between the vector µL and the z axis.

Note also that because L and µL are not classical constants of motion in a magnetic
field, they also are not quantum-mechanical constants of motion. With this statement
we mean that the expectation values 〈L 〉 and 〈µL 〉 are not constant. These vector-valued
expectation values will in fact precess in the same manner as the classical quantities.

12.1.c The Stern–Gerlach experiment and the electron spin

(Section 4.4 in Griffiths, 1.5 in B&J.)
In a homogeneous magnetic field the magnetic moment µ experiences a torque τ = µ×B;

the force F = −∇(−µ·B) then is equal to zero, and the magnetic moment only precesses
around B, as discussed above. In 1921 Stern and Gerlachs had the following idea:
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Let us try to measure the magnetic moment of an atom by sending a beam of these atoms
(collimated by a slit) through an inhomogeneous magnetic field in order to measure the
deflection. If the beam is positioned such that it passes through a vertical field, it should be
deflected vertically (in the z direction). We can show this by assuming an inhomogeneous
field given by

B = axêx − (B0 + az)êz,

where a = −∂Bz/∂z is a suitable constant. You can easily check that this field is divergence
free (∇·B = 0), as is the case for all magnetic fields. The force becomes

F = ∇(µ·B) = ∇(µxax− µz(B0 + az)) = a(µxêx − µzêz). (T12.12)

Here we must now remember that µ precesses rapidly around the B field, that is, about
the z axis. The x-component µx therefore averages to zero and gives no deflection in the
x direction. Thus we get a deflection in the positive or negative z direction, depending on
the force Fz = −aµz. The measurement of the deflection therefore is a measurement of µz.
(Note that µz is constant during the precession.)

In 1921 (before quantum mechanics) Stern and Gerlach expected that the directions of
the magnetic moments |µ| of the atoms entering the magnetic field should be randomly
distributed, corresponding to a continuous variation of µz between −|µ| and +|µ|. They
were hoping to measure the maximal deflection up and down (corresponding to α = 0 and
α = π), making it possible to calculate |µ|, using the velocity of the atoms, the atomic mass,
the length of the magnet, and the parameter a.

After 1925, quantum mechanics has taught us that a measurement of µz must give one
of its eigenvalues (according to the measurement postulate). Since the direction of µ and
hence µz are quantized according to (T12.10), we must therefore expect to observe a quan-
tized deflection. If the total angular momentum of the atom is “integral” (given by an
integral angular-momentum quantum number l), we should then expect to find 2l + 1 dis-
crete deflections, that is, an odd number of pictures of the slit on the screen in the figure
above.

The experiment, however, showed something else: Stern and Gerlach (1922) used a gas
of silver atoms (Z = 47) heated in a furnace. The result was two distinct pictures of the slit
on the screen.
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A similar experiment with hydrogen atoms, conducted by Phipps and Taylor in 1927, also
resulted in two pictures of the slit.

Spin and magnetic moment of the electron

(8.3.3 in Hemmer)
The explanation was found by Uhlenbeck and Goudsmit in 1925, and is most easily

understood in the hydrogen case: Even with l = 0 the electron in the hydrogen atom has
a magnetic moment µS, which causes the deflection of the orbit of each atom. This magnetic
moment is connected with an intrinsic angular momentum of the electron, the so-called spin
angular momentum S, simply called the spin. As all other angular momenta, the spin
can be characterized by an angular-momentum quantum number which is usually denoted

by s, so that |S| = h̄
√
s(s+ 1), and such that the z component can take the values

Sz = msh̄, where ms = −s, −s+ 1, −s+ 2, · · · , +s.

This is analogous to m = Lz/h̄ taking the values −l, −l + 1, −l + 2, · · · , +l for a
given orbital angular-momentum quantum number l. From the general discussion of angular
momenta in Lecture notes 11, it follows that a spin quantum number must in general take
one of the values s = 0, 1

2
, 1, 3

2
, 2, · · ·. The number of ms values is 2s + 1, in analogy with

the 2l + 1 values of Lz.
The fact that we observe two discrete deflections in the Stern–Gerlach experiment then

leads to the interpretation that in this case 2s + 1 is equal to 2; that is, the spin quantum
number s of the electron is equal to 1

2
. Thus the electron has spin “one half”, as we use

to express it. This corresponds to |S| = h̄
√
s(s+ 1) = h̄

√
3/4 = 0.866 h̄. The two possible

values of the magnetic quantum number of the electron spin then are ms = ±1
2
, corre-

sponding to Sz = ±1
2
h̄. These two spin states are commonly denoted by spin up and

spin down.

Experiments show that the intrinsic magnetic moment connected with the spin is

µS = ge
−e
2me

S. (T12.13)
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Here the factors in front of S is the product of the gyromagnetic ratio we found for the
orbital motion, and ge which is a dimensionless factor. Very accurate measurements show
that this factor is

ge = 2× 1.001159652187 (±4) (gyromagnetic factor of the electron), (T12.14)

where the uncertainty (±4) is in the last digit.
To sum up, we may state that the two discrete deflections observed in the SG-experiment

are due to the fact that there are only two possible values of µz, Sz and Fz:

ms = +1
2

: Sz = +1
2
h̄, (µS)z = −1

2
ge

eh̄

2me

= −1
2
geµB, Fz = −aµz = 1

2
ge aµB,

ms = −1
2

: Sz = −1
2
h̄, (µS)z = +1

2
geµB, Fz = −aµz = −1

2
ge aµB.

With a > 0 we see that the upper beam emerging from the SG magnet corresponds to
measuring Sz = +1

2
h̄ (spin up), while the lower beam corresponds to Sz = −1

2
h̄ (spin

down).1

12.1.d Spins of other particles

(8.3 in Hemmer)

The proton and the neutron

What about the proton, which is the nucleus of the hydrogen atom — doesn’t also this
particle have spin 1

2
and a magnetic moment? The answer is yes, but it turns out that that

the magnetic moment of the proton is much smaller than that of the electron;

µp = 5.59
e

2mp

Sp (gp = 5.59). (T12.15)

Thus, for the proton the natural unit for the magnetic moment is

µN ≡
eh̄

2mp

= 3.1524515 · 10−8 eV/T(esla) (1 nuclear magneton). (T12.16)

1With hydrogen atoms or silver atoms from a furnace, the SG experiment gives a fifty-fifty distributions
of atoms in the upper and lower beams; the probabilities of measuring spin up or spin down are both equal to
1
2 . (This holds also if the SG magnet is turned so that another component of the spin is measured.) One then
says that the beam emerging from the furnace is unpolarized. On the other hand, after the passage through
the inhomogeneous field, the atoms on the upper beam are all left in the state ”spin up”, they constitute
an ensemble of completely spin-polarized atoms. Thus a Stern–Gerlach device, characterized essentially by
the direction of the inhomogeneous field, can be used both to measure a spin component and to prepare an
ensemble in a well-defined spin state.
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We note that the gyromagnetic factor gp = 5.59 for the proton deviates quite much from the
factor ge ≈ 2 for the electron. This has to do with the fact that the proton is a composite
particle, consisting of two u-quarks with charge q = 2e/3 and one d-quark with q = −e/3.
The neutron is also a composite particle, consisting of one u-quark and two d-quarks, and
then it is perhaps not so surprising that it has a non-zero magnetic moment,

µn = −3.83
e

2mp

Sp (gn = −3.83), (T12.17)

even if it is a neutral particle.
It is important to note that µp and µn are a factor ∼ 1000 smaller than µe. Therefore

the behaviour of atoms in a magnetic field is largely determined by the electrons. 2

Why do we measure only two discrete deflections also for the silver atoms? The answer
lies in the fact that 46 out of the 47 silver electrons are in a quantum-mechanical state in
which both the total orbital momentum and the total spin are equal to zero. Both the orbital
and the spin angular momenta then are determined by electron number 47. This electron
is in an s-state, with l = 0. Thus the total magnetic moment of the atom simply is the
intrinsic magnetic moment of electron no 47 (as for a free electron). (Here we may neglect a
possible magnetic moment of the nucleus, because this will anyhow be about a factor 1000
smaller than that of the electron.)

Spins of other particles

The electron and its antiparticle, the positron, are only two of several so-called leptons
(particles that do not interact strongly), which all have spin 1

2
. Among these are the muons

µ± (with mass mµ = 105.66 MeV/c2) and τ± (mτ = 1777 MeV/c2), which in a way are
heavier relatives of the electron. Thus the g factor of the muon is also very close to 2:

µµ− = gµ
−e

2mµ

Sµ, (T12.18)

gµ = 2× 1.0011659160 (±6) (gyromagnetic factor of the muon). (T12.19)

Related to these charged leptons there is a set of almost massless neutral leptons which
interact only through the weak force. These are the electron neutrino νe and the electron
anti-neutrino ν̄e. Related to the muon there is a corresponding pair (νµ and ν̄µ), and
related to the tau lepton there is ντ and ν̄τ . All these neutrinos are spin-one-half particles.

The photon is somewhat special, because the component of the spin along the direction
of motion can only have the two values ±h̄, corresponding to spin 1. This is due to the fact
that the photon is massless. Related to the photon are the massive vector bosons, W±

(MW ≈ 80.4 MeV/c2) and Z0 (MZ ≈ 91.2 MeV/c2), which have spin 1, and which “mediate”
the elektro-weak interactions together with the photon. Spin 1 is also found in the gluons,
which mediate the strong forces. The graviton, the carrier of the gravitational force, is
believed to have spin 2.

All the remaining particle species are so-called hadrons (which all interact strongly).
These can be divided into two groups, one of which is the baryons (p, n, Λ, Ω−, · · ·), which

2There are exceptions: In nuclear magnetic resonance (NMR) it is an important point that the coupling
term −µ·B between the magnetic field and the magnetic moments of the nuclei are so small that they
correspond to radio-frequency energies.
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are all three-quark systems. Because the quarks have spin 1
2
, it follows from the rules for the

“addition of angular momenta” (which we shall treat later) that the baryons can only have
“half-integral” spins (1/2, 3/2, etc). The other group consists of the mesons (π,K, ρ, ω, · · ·),
which are quark-antiquark systems, and which therefore can only have integral spins (e.g. 0
for the π mesons and 1 for the ρ mesons).

12.2 Formalism for spin 1
2

(Hemmer 8.3, Griffiths 4.4, B&J 6.7–8)

What the spin is not

Uhlenbeck and Goudsmit based their spin hypothesis (in 1925) on the classical notion of a
rotating electron, with a certain mass and charge distribution. Modern scattering experi-
ments have shown, however, that the size of the electron, if it differs at all from zero, must be
smaller than 10−18 m. It has also turned out to be impossible to construct a classical model
with a mass and charge distribution that reproduces the spin and the magnetic moment of
the electron. Thus the electron behaves as a point particle, and we have to state that the
spin and the magnetic moment (with ge ≈ 2) of this particle can not be understood as the
result of any kind of “material rotation” which can be pictured classically and which can
be described in terms of a wave equation and a wave function. The latter is only possible
for the orbital angular momentum, for which l can take only integer values, while the spin
quantum number s can also take half-integral values, depending on which particle we are
looking at. Note that for a given particle species s is completely fixed. Thus for the electron

the intrinsic angular momentum has no choice, it has to be |Ŝ| = h̄
√

3/4, in contrast to the
orbital angular momentum which can vary, even if it is quantized. Again we see that the
spin does not behave as we would expect for an ordinary rotational motion.

12.2.a “Ladder” of ket vectors for spin 1
2

Even if we do not quite “understand” what the spin is, we have a perfectly applicable theo-
retical model in the abstract ket-vector formalism for angular momenta which was developed
in Lecture notes 11, in the sense that we can apply it to processes involving the spin and
accurately predict the outcome of experiments.

The starting point is (T11.38) and (T11.39), which for the spin (with Ĵ = Ŝ, and with
j = s = 1

2
) take the form

Ŝ2 | 1
2
,m〉 = 3

4
h̄2 | 1

2
,m〉,

Ŝz | 12 ,m〉 = h̄m | 1
2
,m〉 ; m = ±1

2
, (T12.20)

The two eigenvectors are

| 1
2
,+1

2
〉 ≡ |+1

2
〉 ≡ |+〉 ≡ |↑〉 (spin up)

and
| 1

2
,−1

2
〉 ≡ |−1

2
〉 ≡ |−〉 ≡ |↓〉 (spin down).
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Note that we may choose the labels as we wish. Thus we may use e.g. only m or only the sign
of m; without stating explicitly that s = 1

2
. These two vectors form a basis of orthogonal

and normalized vectors; they are the only eigenvectors of the Hermitian operator Ŝz. Thus
the state space of this half-integral spin is a two-dimensional vector space, and is spanned
by a ladder with only two rungs:

The ladder operators Ŝ+ and Ŝ− take us up and down in the ladder: According to (T11.52)
we have (with j = s = 1

2
)

Ŝ± |m〉 = h̄
√

(1
2
∓m)(3

2
±m) |m± 1〉, m = ±1

2
,

or explicitly:

Ŝ+ |+1
2
〉 = 0 ; Ŝ+ |−1

2
〉 = h̄ |+1

2
〉 ;

Ŝ− |−1
2
〉 = 0 ; Ŝ− |+1

2
〉 = h̄ |−1

2
〉 . (T12.21)

From these formulae we see that

Ŝ2
+ |±1

2
〉 = 0 and Ŝ2

− |±1
2
〉 = 0. (T12.22)

The last two formulae are particular for spin 1
2

and are of course due to the fact that we
have a ladder with only two rungs.

Note that as long as we consider only the spin, that is, do not take into account the other
degrees of freedom for the particle, the two vectors |+1

2
〉 and |−1

2
〉 are a complete set; the

spin space is a two-dimensional sub-space of the Hilbert space. The completeness relation
of this set is (cf (T10.29))∑

m=±1
2

|m〉〈m| = |+1
2
〉〈+1

2
| + |−1

2
〉〈−1

2
| = 11. (T12.23)

Applying this unit operator we may expand an arbitrary vector |χ〉 in the two-dimensional
spin space:

|χ〉 =
∑
m

|m〉〈m|χ〉 =
∑
m

〈m|χ〉 |m〉 = 〈+1
2
|χ〉 |+1

2
〉+ 〈−1

2
|χ〉 |−1

2
〉

≡ a+ |+1
2
〉+ a− |−1

2
〉.
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The normalization condition for the vector |χ〉 is

〈χ|χ〉 ≡ 〈χ| · |χ〉 =
(
a∗+〈+1

2
|+ a∗−〈−1

2
|
)
·
(
a+|+1

2
〉+ a−|−1

2
〉
)

= |a+|2 + |a−|2 = 1.

(T12.24)
Note that the coefficient (or projection) a+ = 〈+1

2
|χ〉 is the probability amplitude of

measuring spin up (Sz = 1
2
h̄) and leaving the spin in the state |+1

2
〉. In the same manner,

a− = 〈−1
2
|χ〉 is the amplitude of “measuring spin down”.

12.2.b Matrix formulation. The Pauli matrices

(8.3 in Hemmer, 6.8 in B&J)

Ket- and bra-vectors are represented by column and row vectors

It is customary, both for spin 1
2

and higher angualar momenta, to use a matrix representation
of vectors and operators, with the 2j + 1 vectors |j,m〉 (where m goes from j to −j) as
basis. In the spin-1

2
case the general vector |χ〉 is then represented by the column matrix(

〈+1
2
|χ〉

〈−1
2
|χ〉

)
=

(
a+

a−

)
≡ χ, (T12.25)

which we denote simply by χ, and which is called a spinor. The basis vector|+1
2
〉 is repre-

sented by 3 (
〈+1

2
|+1

2
〉

〈−1
2
|+1

2
〉

)
=

(
1
0

)
≡ χ+ (T12.26)

and the spin-down vector |−1
2
〉 is represented by(
〈+1

2
|−1

2
〉

〈−1
2
|−1

2
〉

)
=

(
0
1

)
≡ χ−. (T12.27)

These are known as the Pauli spinors, after Pauli, who invented the theory for spin 1
2

in
1925. We note that these spinors are orthonormal,

χ†ε′χε = δε′ε.

The adjoint of the ket vector |χ〉 = a+|+1
2
〉 + a−|−1

2
〉, which is (|χ〉)† = 〈χ|, is rep-

resented by the adjoint matrix (transpose and complex conjugate), that is, by the row
matrix

χ† = (a∗+ a∗−).

The normalization condition may then be written as

χ†χ = (a∗+ a∗−)

(
a+

a−

)
= |a+|2 + |a−|2 = 1,

3Note: In the literature it is not uncommon to use an equality sign between the vector |χ〉 and the column
matrix or spinor χ:

|χ〉 = χ ≡ (
a+
a−

).

The first equality sign should be read as “represented by”.
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Operators are represented by 2× 2-matrices

Since we are using the eigenvectors of Ŝ2 and Ŝz as a basis, these operators must be rep-
resented by diagonal matrices; cf the discussion of matrix mechanics in Lecture notes 10
(section 10.4): From (T12.20) we find that

〈m′ |Ŝ2|m〉 = 3
4
h̄2 δm′m and 〈m′ |Ŝz|m〉 = h̄m δm′m,

or

S2 =
3

4
h̄2

(
1 0
0 1

)
≡ 3

4
h̄2 11 and Sz = 1

2
h̄

(
1 0
0 −1

)
≡ 1

2
h̄σz.

(T12.28)

Note that the matrix elements are “numbered” acording to the scheme

(
++ +−
−+ −−

)
, and

that 11 here stands for the unit matrix. Note also that the diagonal elements are identical
to the eigenvalues, and hence to the possible results for measurements of S2 and Sz; a
measurement of Sz can only give +1

2
h̄ or −1

2
h̄, no matter which state the spin is prior to the

measurement.
To find the matrices representing the remaining operators we take (T12.21) as the starting

point. Projecting these relations on |+1
2
〉 and |−1

2
〉 we get for example

(S+)++ = 〈+1
2
|Ŝ+|+1

2
〉 = 0 and (S+)+− = 〈+1

2
|Ŝ+|−1

2
〉 = h̄.

In this manner we find that the ladder operators Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy are
represented by the matrices

S+ = 1
2
h̄

(
0 2
0 0

)
and S− = 1

2
h̄

(
0 0
2 0

)
. (T12.29)

By adding and subtracting these we find at last the matrices for Ŝx and Ŝy:

Sx = 1
2
h̄

(
0 1
1 0

)
≡ 1

2
h̄σx and Sy = 1

2
h̄

(
0 −i
i 0

)
≡ 1

2
h̄σy. (T12.30)

Here we observe that the matrices Sx and Sy become non-diagonal, which was of course to be
expected, since Ŝx, Ŝy and Ŝz do not commute, and since we have chosen the eigenvectors
of Ŝz as our basis. To gain some experience with these matrices you should now check the
eigenvalue equations

Sz χ± = ±1
2
h̄ χ±, (T12.31)

which correspond to (T12.20), and also the relations

S+ χ+ = 0, S+ χ− = h̄ χ+, etc,

which are (T12.21) on matrix form.
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A small exercise: Check that these matrices satisfy [Sx, Sy] = ih̄Sz, that is,
the angular-momentum algebra.

Another exercise: Show that the matrix squares S2
x, S

2
y and S2

z are equal.
What does this tell us about the possible eigenvalues of Sx and Sy, and hence
about possible measurement results?

Solution: If you square the matrices (T12.30), you will find that

S2
x = S2

y =
h̄2

4
·11 = S2

z . (T12.32)

This implies that the eigenvalues of Sx and Sy are ±1
2
h̄, just as for Sz. Thus the possible

measured values for the x- and y-components of S are the same as for Sz. This should of
course be expected from symmetry considerations; we are free to choose the orientation of
our coordinate system, and then there can be no difference between the possible measured
values for Sx and Sz.

Pauli matrices. Rules of calculation

To simplify the notation it is customary to use the dimensionless matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
, (T12.33)

which are called the Pauli matrices. The matrix representation of the spin operator may
then be written as

S = 1
2
h̄σ; σ ≡ êxσx + êyσy + êzσz.

The eigenvalue equation (T12.20) takes the form

σz χ+ = 1 · χ+ , σz χ− = −1 · χ−. (T12.34)

For future use we include some rules of calculation for the Pauli matrices. The angular-
momentum algebra [Sx, Sy] = ih̄Sz takes the form

[σx, σy] = 2iσz, etc, (T12.35)

which can be written as 4

σiσj − σjσi = 2i εijk σk. (T12.36)

4We use Einstein’s summation convention: When a latin index as e.g. k occurs twice in a term, it
means that this index is summed over, from k = 1 to k = 3. Example:

akbk ≡
3∑

k=1

akbk.

(If an index occurs more than twice in a term we have made a mistake).
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Here we use Einstein’s summatiuon convention. The Levi-Civita tensor is defined by

εijk =


1 for ijk = 123, 231, 312,
−1 for ijk = 132, 321, 213,

0 otherwise.
(T12.37)

By direct calculation (or from (T12.32)) we see that

σ2
x = σ2

y = σ2
z =

(
1 0
0 1

)
≡ 11. (T12.38)

It is also straightforward to show that the matrices anticommute;

σxσy + σyσx = 0, etc.

See the relations (T12.22) which imply that Sx and Sy satisfy the equation

S2
x − S2

y + i(SxSy + SySx) = 0.

These relations, which can be collected in the formula

σiσj + σjσi = 2δij 11, (T12.39)

are special for spin 1
2
.

By combining (T12.36) and (T12.39) we find that

σiσj = δij 11 + i εijk σk. (T12.40)

From this we can derive the following relation which holds for arbitrary vectors a and b:

(σ·a)(σ·b) = σiai σjbj = δijaibj11 + i εijk aibjσk,

that is,

(σ·a)(σ·b) = a·b 11 + iσ·(a× b). (T12.41)

In particular we have for a = b = n̂ (where n̂ is a unit vector):

(σ·n̂)(σ·n̂) = n̂·n̂ 11 = 11. (T12.42)

Note that the relations (T12.38) are special cases of this formula, and that it corresponds to

(S·n̂)2 =
h̄2

4

(
1 0
0 1

)
=
h̄2

4
·11. (T12.43)

This formula is a generalization of (T12.32), and had to be expected considering the sym-
metry argument above; no matter which component S·n̂ of the spin we choose to measure,
the result must be 1

2
h̄ or −1

2
h̄.
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12.2.c The spin direction

(B&J p 311)
Even if the formalism above was based on abstract Hilbert vectors (without a wave-

function representation), we can use it to calculate all the relevant physical quantities which
can be measured experimentally. This means that we have a well-functioning physical theory
for the spin. Thus we can calculate e.g. the expectation value 〈Sz 〉 with the following recipe
(which we may as usual call the “sandwich” or “burger” recipe):

〈Sz 〉χ = 〈χ|Ŝz|χ〉 = χ†Szχ. (T12.44)

A small exercise: Check the last step above, using

〈χ|Ŝz|χ〉 = 〈χ| 11 · Ŝz · 11 |χ〉 =
∑
mn

〈χ|m〉〈m|Ŝz|n〉〈n|χ〉.

[Hint: Set 〈m|χ〉 = am, so that 〈χ|m〉 = a∗m.]

As an example, we may choose the state χ+ =

(
1
0

)
, which gives 5

〈Sz 〉 = χ†+ Sz χ+ = χ†+
1
2
h̄ χ+ = 1

2
h̄,

〈Sx 〉 = χ†+ Sx χ+ = (1, 0)1
2
h̄

(
0 1
1 0

)(
1
0

)
= 0,

〈Sy 〉 = χ†+ Sy χ+ = (1, 0)1
2
h̄

(
0 −i
i 0

)(
1
0

)
= 0.

Thus, for the state χ+ =

(
1
0

)
we find that

〈S 〉 = 1
2
h̄ 〈σ 〉 = 1

2
h̄ êz.

This is a good reason to call this state spin up. The direction of 〈S 〉, which is 〈σ 〉 = êz ≡ ẑ
in this case, may be called the spin direction. Therefore we also use the notation

χ+ =

(
1
0

)
≡ χẑ , χ− =

(
0
1

)
≡ χ−ẑ, (T12.45)

where the direction 〈σ 〉 is used as an index.

spin up: χẑ spin down: χ−ẑ
〈σ 〉 = ẑ 〈σ 〉 = −ẑ.

5〈Sz 〉 becomes equal to 1
2 h̄ because χ+ is an eigenspinor with sharp Sz = 1

2 h̄. That 〈Sx 〉 and 〈Sy 〉
become equal to zero is not strange. It would be strange if 〈S 〉 were to point in another direction than ẑ
after the preparation of the state χ+.
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These states are illustrated in the figure, which is equivalent to that used for the orbital
angular momentum in Lecture notes 5. This picture is of limited value. It gives the correct

|S| (= h̄
√

3/4 ) and Sz = ±1
2
h̄, and also S2

x + S2
y = S2 − S2

z = 1
2
h̄2. The picture may

also (barely) remind us that the expectation values of Sx and Sy are equal to zero for both
the two states χ±,

〈Sx 〉 = 〈Sy 〉 = 0.

The drawback of this illustration is that it can mislead us to believe that the direction of S is
an observable, which it is not, because the components are not compatible; they can not have

sharp values simultaneously. The angle arccos(1
2
/
√

3
4
) = 54.7◦ or 125.3◦ between S and the

z axis thus is only another way to illustrate the fact that the two possible values of Sz are±1
2
h̄,

compared with the fixed value |S| = h̄
√

3
4
. This is the same type of space quantization

that was found for the orbital angular momentum in Lecture notes 5. When the particle is
sent through the Stern–Gerlach magnet in section 12.1.c, the spin has to choose one of these
two states (no matter what state it is in before the “measurement”). This choice determines
whether the force on the magnetic moment acts upwards or downwards, and decides whether
the particle goes into the upper or lower beam.

However, a Stern–Gerlach magnet can also be rotated. Suppose that we rotate it 90
degrees so that it measures Sx instead of Sz. What kind of states do we then get for the
ensembles in the “upper” and “lower” beam? According to the measurement postulate the
answer is that the spin must then choose between the eigenstates χ±x̂ of Sx.

A small exercise: Set χ =

(
a
b

)
and solve the eigenvalue problem

Sx

(
a
b

)
= e

(
a
b

)
,

where e is the eigenvalue.

The solution is that the eigenvalues are ±1
2
h̄ (the same as for Sz) and that the eigenstates

with spin directions x̂ and −x̂ are respectively

χx̂ =
1√
2

(
1
1

)
and χ−x̂ =

1√
2

(
1
−1

)
. (T12.46)

In the same manner one finds that

χŷ =
1√
2

(
1
i

)
and χ−ŷ =

1√
2

(
1
−i

)
, (T12.47)

with the same eigenvalues. In these spinors we have chosen the phases in such a way that
the upper components are real and positive.

General spin-1
2

states

(Hemmer p 178, B&J p 309)
The physical rotation of the Stern–Gerlach magnet by 90 degrees may be called an active

rotation. Consider now instead a so-called passive rotation, where the Stern–Gerlach
device keeps the original physical orientation, while we imagine that the coordinate system
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is rotated instead. The “up” direction of the device (the original z direction) in the new
coordinate system then becomes a unit vector

n̂ ≡ x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ, (T12.48)

characterized by the angles θ and φ :

In this coordinate system, the spin directions in the upper/lower beam are 〈σ 〉 = ±n̂; the
spin directions are physical and measurable and remain fixed together with the device.

Viewed from the new coordinate system we are now measuring the spin component S·n̂.
The two possible measured values are of course unchanged, and so are the physical states, but
the matrix representations of these states are changed, because the new coordinate system
corresponds to a change of basis; the Pauli spinors

χ+ =

(
1
0

)
and χ− =

(
0
1

)

now correspond to spin up and spin down related to the new ẑ direction.
These matrix representations, which correspond to spin “up” and spin “down” in the n̂

direction, are determined by the eigenvalue equations

S·n̂χ±n̂ = ±1
2
h̄ χ±n̂ ⇐⇒ σ·n̂χ±n̂ = ±χ±n̂. (T12.49)

It is sufficient to solve the equation σ·n̂χn̂ = χn̂. We set χn̂ =

(
a
b

)
. This spinor

satisfies the eigenvalue equation

(σ·n̂− 11) χn̂ = (σxnx + σyny + σznz − 11)

(
a
b

)

=

(
cos θ − 1 sin θ e−iφ

sin θ eiφ − cos θ − 1

)(
a
b

)
= 0. (T12.50)

As you can easily check, both the upper and the lower components of this equation are
satisfied when

(cos θ − 1)a+ sin θ e−iφ b = 0,

that is, for
b

a
=

1− cos θ

sin θ
eiφ =

sin 1
2
θ eiφ

cos 1
2
θ

. (T12.51)

This complex ratio between the lower and upper components is in fact all we need to know
about the spinor. Admittedly, the two complex numbers a and b contain four real parame-
ters, but the normalization condition |a|2 + |b|2 = 1 reduces the number to three, and one
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parameter may be allowed to be free, in the form of a common phase factor which is of no
physical significance. Explicitly we have from the normalization condition

1

|a|2
= 1 +

∣∣∣∣∣ ba
∣∣∣∣∣
2

= 1 +
sin2 1

2
θ

cos2 1
2
θ

=
1

cos2 1
2
θ
,

that is,
a = eiα cos 1

2
θ,

where the phase α can be chosen freely. Hence

b = a· b
a

= eiα sin 1
2
θ eiφ,

so that

χn̂ = eiα
(

cos 1
2
θ

sin 1
2
θ eiφ

)
, (T12.52)

where the arbitrary phase α is unimportant.

A small exercise: Show that the other state χ−n̂ (with spin down compared to
the direction n̂) may be written as

χ−n̂ = eiα
(

sin 1
2
θ

− cos 1
2
θ eiφ

)
= eiα

′
(
− sin 1

2
θ e−iφ

cos 1
2
θ

)
. (T12.53)

There are several ways to do this: You may (i) change the sign of the eigenvalue
in (T12.49) and (T12.50) and proceed as above, or (ii) use that χ−n̂ must be
orthogonal to χn̂. A third method is (iii) to notice that this state has spin up
in the direction n̂′ = −n̂, which corresponds to the angles θ′ = π − θ and
φ′ = φ+ π.

Some other exercises:

a) Show that for a general normalized spinor χ =

(
a
b

)
we have

〈σx 〉 = χ†χ = <e(2a∗b),

〈σy 〉 = =m(2a∗b),

〈σz 〉 = |a|2 − |b|2,

(T12.54)

giving the spin direction

〈σ 〉χ = x̂ <e(2a∗b) + ŷ =m(2a∗b) + ẑ (|a|2 − |b|2). (T12.55)
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b) Show that the length of the real vector 〈σ 〉 is equal to 1. [Hint: [<e(a∗b)]2 +
[=m(a∗b)]2 = |a∗b|2 = |a|2|b|2.]

c) Show that the direction of 〈σ 〉χ is determined uniquely by the complex ratio

b/c. [Hint: Take a factor |a|2 = a∗a outside.]

d) Check that 〈σ 〉 = n̂ for the state χn̂, by inserting a and b from (T12.52).

e) Find 〈S 〉 for the state χŷ using the formula (T12.54).

As a conclusion of the discussions above, we can state that an arbitrary spinor χ =

(
a
b

)
corresponds to a well-defined spin direction 〈σ 〉, and that χ is an eigenspinor of the 〈σ 〉
component of S:

〈σ 〉 ·S χ = 1
2
h̄ χ.

Note that both 〈σ 〉 and χ are uniquely determined by the complex ratio b/a (modulo a
phase factor for χ).

12.2.d Precession in homogeneous magnetic field

(8.3.5 in Hemmer, 4.3 in Griffiths)
A homogeneous magnetic field B = Bêz will not split a particle beam the way a Stern–

Gerlach magnet does, but it will still affect the spin state, via the interaction term −µ̂·B.
If we disregard the orbital motion of the electron and all other interactions, that is, if we
consider only the behaviour of the spin, then the Hamiltonian reduces to this interaction
term:

Ĥ = −B·µ̂ = −B·
(−gee

2me

S
)
≡ ω·S = ωSz, (T12.56)

where

ω ≡ geeB

2me

êz.

We start by noting that since the Hamiltonian is proportional to Sz, the spin eigenfunc-
tions χ±ẑ of Sz now become energy eigenstates, with the energies

E± = ±1
2
h̄ω.
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ground state χ−ẑ 1. excited state χẑ

The state χ−ẑ has 〈µ 〉 parallell to the B field, and therefore is the ground state, with
the energy E− = −1

2
h̄ω. The first (and only) excited state has spin up and therefore 〈µ 〉

antiparallell to the B field.
Each of these energy eigenstates corresponds to a stationary state,

χ±(t) = e−iE±t/h̄χ±ẑ = e∓iωt/2χ±ẑ. (T12.57)

In these stationary states nothing “happens”, so 〈µ 〉 stays parallell or antiparallell to B the
whole time.

On the other hand, if we consider the superposition

χ(t) = a0χ+(t) + b0χ−(t) =

(
a0e
−iωt/2

b0e
iωt/2

)
≡
(
a
b

)
, (T12.58)

then this is a non-stationary state where things “happen”. If we assume for simplicity that
a∗0 b0 is real, we have

a∗b = a∗0 b0 e
iωt.

Inserting into (T12.55) we then find that

〈S 〉χ = 1
2
h̄ 〈σ 〉 = 1

2
h̄
[
êx(2a

∗
0 b0) cosωt+ êy(2a

∗
0 b0) sinωt+ êz(|a0|2 − |b0|2)

]
. (T12.59)

Here we see that 〈Sz 〉 is constant (independent of t), while

d

dt
〈Sx 〉 = −ω 〈Sy 〉 and

d

dt
〈Sy 〉 = ω 〈Sx 〉 . (T12.60)

This shows that 〈S 〉 (and hence also 〈µ 〉) precess around the z axis with angular frequency
ω:

d

dt
〈S 〉 = ω × 〈S 〉 , d

dt
〈µ 〉 = ω × 〈µ 〉 . (T12.61)

Note that this is quite analogous to the classical precession that we found for the magnetic
moment on page 3 [see equation (T12.6)].

A small challenge: Use the formula ((4.19) in Hemmer) for the time develop-
ment of expectation values,

d

dt
〈F 〉 =

i

h̄

〈
[Ĥ, F̂ ]

〉
,

to derive the formulae (T12.60).


