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Lecture notes 9

9 Spherical box. Systems with cylin-
drical symmetry

These notes treat the spherical box potential (section 9.1). The discussion of
cylindrically symmetric systems in section 9.2 has not been a part of FY2045/TFY4250
(for some time).

9.1 Spherical box

[See 4.1.3 in Griffiths, and 7.3 in B&J.]

A very simple example of a spherically symmetric potential is the spherical box, with

V (r) =

{
0 for r < a,
∞ for r > a.

The radial equation (T5.41) may then for 0 ≤ r < a be written on the form

(kr)2 d2R

d(kr)2
+ 2(kr)

dR

d(kr)
+
[
(kr)2 − l(l + 1)

]
R(r) = 0, (T9.1)

where k ≡
√

2mE/h̄2. This differential equation is known as the spherical Bessel equa-
tion.
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Spherical Bessel and Neumann functions

For a given l the general solution of this equation is a linear combination of the spherical
Bessel function jl(kr) and the spherical Neumann function nl(kr):

R(r) = Ajl(kr) +B nl(kr).

These two types of functions are respectively regular and irregular (diverge) at the origin.
The Neumann functions are therefore not relevant when we need solutions in an r-region
which includes the origin, which is the case at hand. It can be shown that

jl(z) = zl
(
−1

z

d

dz

)l
sin z

z
and nl(z) = −zl

(
−1

z

d

dz

)l
cos z

z
. (T9.2)

Thus for l = 0 and 1 we have

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
,

n0(z) = −cos z

z
and n1(z) = −cos z

z2
− sin z

z
.

Here we see that the Neumann functions diverge at the origin, while expansion for small z
shows that the Bessel functions behave as

j0(z) ≈ 1 and j1(z) ≈ z

3
for small z.

For generel values of l it can be shown that jl(z) ∝ zl for small z. This shows that the
behaviour for small r of the radial functions

Rl(r) = Aljl(kr) (T9.3)

for the spherical box agrees with the general formula (T5.44).

Energy quantization and wave functions

Because V =∞ for r > a, we must require that Rl(r) = 0 for r = a. This leads to
energy quantization. For l = 0 this is very simple. The continuity condition

R0(a) = Aj0(ka) = A
sinka

ka
= 0

requires that ka is an integer multiple of π. Thus the allowed k-values are k(0)
n = πn/a, so

that the energies and the radial functions are

En,l=0 =
(h̄k(0)

n )2

2m
=

(h̄πn)2

2ma2
and Rn,l=0(r) = An0

sin(πnr/a)

πnr/a
, n = 1, 2, · · · .

(T9.4)

These energies are the same as for the one-dimensional box of width a, and that
is not at all surprising. This is because for l = 0 the effective potential is equal
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to zero for 0 ≤ r < a, so that the “one-dimensional” radial equation (T5.42)
for u0(r) = rR0(r) takes the form

− h̄2

2m

d2u0(r)

dr2
= E u0(r), with u0(0) = u0(a) = 0.

This equation describes a one-dimensional box, and the solutions must all be of
the type sin kr in order to satisfy the requirement u0(0) = 0. The condition
u0(a) = 0 then requires that ka is equal to one of the zeros of the sine function,
πn. This gives a set of solutions un0(r) ∝ sin(πnr/a), which are precisely the
solutions found above.

The figure shows the radial functions, that is, the spherical Bessel functions

j0(k(0)
n r) =

sin(πnr/a)

πnr/a
,

for n = 1, 2, 3, 4, corresponding to the radial quantum numbers nr = 0, 1, 2, 3.

Note that all these s-waves differ from zero at the origin; for l = 0 there is no “centrifugal
barrier”, which would otherwise give a zero at the origin.

States with angular momentum

For l ≥ 1 it is not quite as simple. Both Rnl(r) and unl(r) = rRnl(r) now become more
complicated, due to the effective potential which in this case consists of the centrifugal term:

V l
eff(r) =

h̄2l(l + 1)

2mr2
.

(See the figure on page 21 in Lecture notes 5.) For a given l the set Rnl(r) of solutions is
determined by the Bessel function jl(kr), which must have a zero at r = a. This requires
that ka is one of the zeros of jl, which we may denote by Π(l)

n (in analogy with the zeros πn
of the function R0(r) = j0(r) = sin(kr)/r):

R(a) = Ajl(ka) = 0 =⇒ k(l)
n a = Π(l)

n .

The energies and the wave functions for angular momentum l thus are

En,l =
(h̄k(l)

n )2

2m
=

(h̄Π(l)
n )2

2ma2
and ψnlm(r, θ, φ) = Rn,l(r)Ylm(θ, φ) , m = 0,±1,±2, · · ·

(T9.5)

where Rn,l(r) = Anl jl(Π
(l)
n r/a) , n = 1, 2, · · · , .
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The table gives some of the zeros Π(l)
n (given on page 467 in Abramowitz and Stegun).1 Note

that the radial quantum number is nr = n− 1.

j0 j1 j2 j3

nr = 0 Π
(0)
1 = π Π

(1)
1 = 4.4934 Π

(2)
1 = 5.7635 Π

(3)
1 = 6.9879

nr = 1 Π
(0)
2 = π · 2 Π

(1)
2 = 7.7253 Π

(2)
2 = 9.0950 Π

(3)
2 = 10.4171

nr = 2 Π
(0)
3 = π · 3 Π

(1)
3 = 10.9041 Π

(2)
3 = 12.3229 Π

(3)
3 = 13.6980

(T9.6)

A small exercise: Show that the zeros Π(1)
n of j1(z) are determined by the

condition tan Π(1)
n = Π(1)

n , and check that the zeros in the table satisfy this
condition.

The figure shows the radial functions Rn1(r) ∝ j1(Π(1)
n r/a) for l = 1 and n = 1, 2, 3,

corresponding to the radial quantum numbers nr = 0, 1, 2. These radial functions all be-
have as ∼ r for small r. For higher angular momenta (l) the centrifugal term causes a
stronger suppression of the radial functions near the origin; as mentioned above they behave
as ∼ rl for small r.

Another small exercise: Use the above table to find the quantum numbers for
the first excited levels. Find the (degree of) degeneracy for these levels. Suppose
that we put a small number of non-interacting fermions with spin 1

2
into the box.

How many fermions are allowed in each energy level?

9.2 Potentials with cylindrical symmetry ***2

9.2.a “Two-dimensional” systems

(See 5.3 in Hemmer)

1These zeros, and vast amounts of other information both on Bessel functions and other important
special functions, are available in a standard handbook by M. Abramowitz and I.A. Stegun; Handbook of
Mathematical Functions.

2Not compulsory in FY2045/TFY4250.
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The figure shows four “box” potentials, all of which are symmetric with respect to the z-axis.
In (a) the “one-dimensional” box on page 4 in Lecture notes 8 has been bent around into a
circular ring. In (b) this ring has been changed to a circular disk. In (c), the dimension in
the z-direction of this disk has been increased, and is no longer small. In (d) the diameter of
the cylinder (c) has been made small, so that we have what might be called (a box version
of) a quantum wire. In all these cases, the motion in the z-direction is in a way trivial, being
as in a one-dimensional box. In (a) and (b), the z-degree of freedom is excited only at fairly
high energies.

Polar coordinates for two-dimensional systems

If we neglect the motion in the z-direction, we are left with an essentially two-dimensional
system with a rotational symmetry with respect to the z-axis. For such two-dimensional
systems with rotational symmetry — whether they are box potentials, more realistic wells
or more complicated potentials — it is convenient to use polar coordinates in the plane, as
described in section 5.3 in Hemmer:

x = r cosφ, r =
√
x2 + y2,

y = r sinφ, tanφ = y/x,

∂r

∂x
=
x

r
= cosφ ,

∂r

∂y
=
y

r
= sinφ ,

∂φ

∂x
= −sinφ

r
,

∂φ

∂y
=

cosφ

r
.

Using the chain rule we have

∂

∂x
=

∂

∂r

∂r

∂x
+

∂

∂φ

∂φ

∂x
= cosφ

∂

∂r
− sinφ

r

∂

∂φ

and
∂

∂y
=

∂

∂r

∂r

∂y
+

∂

∂φ

∂φ

∂y
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ
.

Using these relations it is easy to show that

L̂z =
h̄

i
(x

∂

∂y
− y ∂

∂x
) =

h̄

i

∂

∂φ
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(as in spherical coordinates). With a little more labour you will also find that the Laplacian
in these coordinates is 3

∇2 =

(
∂

∂x

)2

+

(
∂

∂y

)2

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

=
∂2

∂r2
+

1

r

∂

∂r
− L̂2

z

h̄2r2
. (T9.7)

Commuting operators and simultaneous eigenfunctions

In this subsection we denote the particle mass by µ, to avoid mix-up with the magnetic
quantum number m. The Hamiltonian then takes the form

Ĥ = − h̄
2

2µ
∇2 + V (r) = − h̄

2

2µ

(
∂2

∂r2
+

1

r

∂

∂r

)
+

L̂2
z

2µr2
+ V (r). (T9.8)

Here we can identify the first term on the right as the radial part (K̂r) of the kinetisc-energy
operator K̂ for the two-dimensional motion. The second term, the operator K̂L = L̂2

z/(2µr
2),

obviously is the rotational part of the kinetic-energy operator. With a rotationally symmet-
ric potential V (r) it is easy to see that Ĥ commutes with L̂z.

4 This means that it is possible
to find simultaneous eigenfunctions ψ(r, φ) to Ĥ and L̂z:

5

Ĥψ = Eψ,

L̂zψ = mh̄ψ.

Here, the dimensionless quantum number m gives the eigenvalue of L̂z. (That’s why we
chose to call the particle mass µ.)

The eigenvalue equation for L̂z

For fixed r the eigenvalue equation for L̂z takes the form

dψ

ψ
= im dφ.

Integration over φ then gives lnψ = lnR(r) + imφ, where the constant of integration R(r)
is independent of φ, but may be an arbitrary function of r, such that

ψ(r, φ) = R(r) eimφ.

3By adding ∂2/∂z2 you get the Laplacian in cylindrical coordinates; see Rottmann.
4In the three-dimensional case, with V = V (r, z), that is, rotational symmetry with respect to the

z-axis, it should be noted that Ĥ commutes with L̂z, but not with the other components of L̂, and not with
L̂2.

5According to equation (4.19) in Hemmer, the fact that L̂z commutes with Ĥ also means that

d

dt
〈Lz 〉 =

i

h̄

〈
[Ĥ, L̂z]

〉
= 0,

implying that 〈Lz 〉is time independent for an arbitrary state in the potential V (r). We then say that Lz is
a quantum-mechanical constant of motion. See section 4.3 in Hemmer.
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Here, the quantum number m cannot be quite arbitrary. In order for ψ to be continuous,
we must namely have

ψ(r, 0) = ψ(r, 2π) =⇒ e2imπ = 1 =⇒ m = 0,±1,±2, · · · . (T9.9)

Note that the continuity condition above is the same as that used in equation (T8.8) in
Lecture notes 10. Note also that the resulting quantization of the angular momentum Lz
simply stated follows from the fact that the wavefunction must “bite its own tail” at φ = 0,
which also corresponds to φ = 2π. The quantization thus is a consequence of the angular
space being “compact”.

The radial equation

Inserting ψ = R(r)eimφ into the eigenvalue equation Ĥψ = Eψ and using

L̂2
zψ = R(r)L̂2

ze
imφ = h̄2m2R(r)eimφ (T9.10)

and (T9.9), we now find that the radial function R(r) must satisfy the radial equation

− h̄
2

2µ

(
d2

dr2
+

1

r

d

dr

)
R(r) +

[
V (r) +

h̄2m2

2µr2

]
R(r) = ER(r). (T9.11)

Here we notice that the potential V (r) occurs together with the term

h̄2m2

2µr2
=

L2
z

2µr2
.

This is a centrifugal term corresponding to the centrifugal force that can be associated with
the angular momentum Lz. The centrifugal term and the potential together form what we
might call an effektive potential

V
|m|

eff (r) = V (r) +
h̄2m2

2µr2
, |m| = 0, 1, 2, · · · , (T9.12)

where we note that the last term is repulsive, and more so the higher |m| is. Thus, for each
value of |m| we have a radial equation , with a set of radial solutions R(m)(r) which can be
characterized by |m| and the number of zeros nr (the so-called radial quantum number).
Since the corresponding energies do not depend on the sign of m we have degeneracy 2 for
|m| ≥ 1.

Since the curvature of the radial function increases with the number of zeros, the energies
E will in general increase with the radial quantum number nr for fixed |m|. The energies
will also increase with |m| for fixed nr, because the positive (and repulsive) centrifugal term
increases with increasing |m|. 6 This is illustrated in the i example below.

6These conclusions are valid even if we have not written the radial equation on one-dimensional form.
That can be done easily. By introducing the new function v(r) through R(r) = v(r)/

√
r, one finds instead

of the radial equation (T9.11) a radial equation for the function v(r) in which the term r−1d/dr.. goes away,
while the term h̄2m2/(2µr2) is replaced by h̄2(m2 − 1/4)/(2µr2).
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9.2.b Circular two-dimensional box

Here we assume that the particle is forced to move on a circular area of radius a. This
corresponds to a two-dimensional circular box potential

V (r) =

{
0 for 0 < r < a,
∞ for r > a.

The figure shows the effective potential in (T9.11) for |m| = 0, 1 and 2.

With

E ≡ h̄2k2

2µ

we can then write the radial equation on the form

(kr)2 d2R

d(kr)2
+ kr

dR

d(kr)
+
[
(kr)2 −m2

]
R = 0, (0 < r < a), (T9.13)

with the boundary condition R(a) = 0, since the wavefunction must be continuous and
equal to zero for r > a. It is this radial equation together with the boundary condition
that determine the allowed values of k and hence the energy eigenvalues, for each value of
|m|. From the diagram above and the discussion in subsection 9.2.a above we must expect
to find the ground state for m = 0. Furthermore, we will find a set of radial solutions for
each value of |m|.

This differential equation is a standard equation in applied mathematics, and is known
as the Bessel equation. The solutions, the so-called cylinder functions, are widely used in
physics and technology.

For each value of m (≥ 0) the equation has two independent solutions. These can be
chosen such that one of them, the Bessel function Jm(kr), is regular (finite) at the origin,
which we must here require for our radial functions. The other solution, the Neumann
function Nm(kr), is irregular at the origin (goes infinite as r → 0) and can therefore not
be used in a region which includes the origin, which is the case for the present box potential.
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The figure shows J0(z) (relevant for m = 0), J1(z) (relevant for m = ±1) and J8(z)
(relevant for m = ±8). Under these curves we have for comparison included sin z, for
which the zeros are at z = πn. The zeros of the Bessel function Jm(z) are called Π(m)

n , in
analogy with the similar notation in section 9.1. Some of these zeros are given in the table:
7

J0 J1 J2 J3

Π
(0)
1 = 2.4048 Π

(1)
1 = 3.8317 Π

(2)
1 = 5.1356 Π

(3)
1 = 6.3802

Π
(0)
2 = 5.5201 Π

(1)
2 = 7.0156 Π

(2)
2 = 8.4172 Π

(3)
2 = 9.7610

Π
(0)
3 = 8.6537 Π

(1)
3 = 10.1735 Π

(2)
3 = 11.6198 Π

(3)
3 = 13.0152

(T9.14)

For an ordinary box in one dimension, you will recall that the ground state corresponds
to the part of the solution sin kx lying between the origin and the first zero. In analogy
with this and the corresponding discussion in section 9.1, we must for the two-dimensional
circular box require that the radial function R(m)(r) = J|m|(kr) has a zero for r = a.
Taking m = 0 as an example, we get

k(0)
n a = Π(0)

n and E(0)
n =

(h̄k(0)
n )2

2µ
=

(h̄Π(0)
n )2

2µa2
. (T9.15)

The lowest of these energies corresponds to the lowest zero in the table, Π
(0)
1 = 2.4048 (for

n = 1). The corresponding radial function is the part of the Bessel function J0 lying between

0 and Π
(0)
1 :

R
(0)
1 (r) = J0(k

(0)
1 r) = J0(Π

(0)
1 r/a).

This solution is shown in the diagram below, where we have also included the solutions for
n = 2 and n = 3, with respectively one and two zeros in the interval 0 < r < a. The
energies of these states are obtained on inserting the values for Π(0)

n given in the table into
(T9.15). As the table shows, the energy increases with the number of zeros (n − 1); more
zeros in the radial function means more curvature and higher kinetic energy.

7These zeros, and lots of other information both on Bessel functions and other important special func-
tions, are available in M. Abramowitz and I.A. Stegun; Handbook of Mathematical Functions.



TFY4250/FY2045 Lecture notes 9 - Spherical box. Syatems with cylindrical symmetry 10

These radial functions are all determined by the Bessel function J0:

R(0)
n (r) = J0(k(0)

n r) = J0(Π(0)
n r/a). (T9.16)

For |m| ≥ 1 we proceed in the same manner: The energies and the corresponding radial
functions follow from the condition k(m)

n a = Π(m)
n , which gives

E(m)
n =

(h̄k(m)
n )2

2µ
=

(h̄Π(m)
n )2

2µa2
and R(m)

n (r) = Jm(Π(m)
n r/a). (T9.17)

The figure below shows the radial functions R(1)
n (r) for |m| = 1 and n = 1, 2 and 3.

These radial functions for |m| = 1 all go to zero approximately as r for small r (contrary
to the radial functions for m = 0 which have a maximum for r = 0). This is due to
the centrifugal term for |m| = 1. In this figure we have also included the radial function

R
(8)
1 (r) = J8(Π

(8)
1 r/a) for |m| = 8. Here the centrifugal term is so strongly repulsive that

the radial function is strongly suppressed for small r. (It goes as r8 close to the origin.)
Apart from normalization constants the complete eigenfunctions and energies are given

by

ψ(m)
n = eimφR(|m|)

n (r) = eimφ J|m|(Π
(|m|)
n r/a) and E(m)

n =
(h̄Π(|m|)

n )2

2µa2
, (T9.18)

where m = ±|m| and n = 1, 2, · · · . We note that the probability densities are rotationally
symmetric, given by the squares of the radial function.
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From the figures above we see that the number of zeros (of the radial functions) for
0 < r < a are given by n− 1. This is what we call the radial quantum number,

nr ≡ n− 1.

For nr ≥ 1 (n ≥ 2), we have excitatiuon of the “radial degree of freedom”. In analogy,
|m| ≥ 1 corresponds to excitation of the “rotational degree of freedom”.

In the ground state, with m = 0 and n = 1, none of these degrees of freedom are
of course excited. The eigenfunction ψ

(0)
1 = R

(0)
1 (r) is then φ-independent (no angular

momentum Lz), and the radial function has no zero for 0 < r < a, corresonding to minimal
curvature in the radial direction.

The question now is whether the first excited level corresponds to an excitation in the an-
gular or radial direction? The answer is given by the table, which shows that the next to the
lowest energy level is E

(1)
1 = (h̄Π

(1)
1 )2/(2µa2), with Π

(1)
1 = 3.8317. The two states corre-

sponding to this level have radial quantum number nr = n− 1 = 0 and angular-momentum
quantum number m = ±1 (that is, Lz = ±h̄). So here it is the rotational motion that is
excited, giving φ-dependent eigenfunctions, proportional to e±iφ.

The table also shows that the second excited level is E
(2)
1 = (h̄Π

(2)
1 )2/(2µa2), with

Π
(2)
1 = 5.1356. Her we thus have two states with Lz = ±2h̄, and the energy increase is

caused by a faster angular variation, through the two factors e±2iφ.
The radial excitation enters the picure first at the third excited level, which is E

(0)
2 =

(h̄Π
(0)
2 )2/(2µa2), with Π

(0)
2 = 5.5201. Here, we have a state with no rotation, ψ

(0)
2 = R

(0)
2 (r),

with m = 0 and nr = n− 1 = 1. The radial excitation shows up by R
(0)
2 (r) having a zero

for r ≈ 0.44 a (see the figure). The increase in the radial curvature gives a higher energy
than for the states belonging to the first and second excited levels. Note that the zero in the
radial function results in a circular nodal line in the eigenfunction ψ(r, φ).

Part of the “moral” of this discussion is that the sequence of energy levels is determined
by the zeros Π(m)

n of the Bessel functions; cf the table. If we imagine that this two-dimensional
box is “filled” with a number of identical non-interacting spin-1

2
fermions, then the “filling

sequence” is determined by the table, with two fermions per spatial state ψ(m)
n (r, φ). This

is analoguous to the filling sequence for atomic electrons. The particle density for such a
many-fermion state will be rotationally symmetric, since it is a sum of symmetric probability
densities

|ψ(m)
n (r, φ)|2 =

[
R(m)
n (r)

]2
.

The figure shows a scanning-tunneling microscope picture of a surface of copper. On this
surface a “quantum corral” of 48 iron atoms has been deposited. The picture shows clearly
how the resulting density of the surface electrons inside the corral is rotationally symmetric.
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The figure below shows an attempt to describe the observed electron density using states of
a cylindrical box.


