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Lecture notes 1

1. Introduction to quantum mechanics
Chapter 1 of the this course — Introduction to quantum mechanics — is covered
by the present notes, “Lecture notes 1”. In this chapter, we consider some of
the milestones in the historical development of quantum mechanics. Chapter 1 in
Bransden & Joachain gives a more comprehensive review and should be consulted
for more details.

Quantum mechanics — to put it a bit too simply — is our theory of the submicroscopic
world. This world is not so easily accessible for observations as macroscopic physics. This is
why the discovery of most of the quantum phenomena, and their explanation, came as late
as in the beginning of the last century.

At the beginning of the quantum era — in the year 1900 — classical physics appeared
to be an almost complete physical theory:

• Newton’s mechanics had been established for more than two hundred years.

• The wave nature of light was known from the beginning of the 19th century, based on
diffraction experiments carried out by Young and Fresnel, among others.

• The relation between electric and magnetic phenomena had been clarified, particularly
through the work of Faraday and Maxwell, culminating with Maxwell’s equations in
the 1860’s. Maxwell’s prediction of electromagnetic waves in 1865, and the experi-
mental verification by Hertz in 1887, led to the understanding that also light is an
electromagnetic wave phenomenon.

• In addition, thermodynamics and statistical mechanics were developed during the 19th
century.

At the end of the century, these theories were by many people considered to give an almost
complete description of the physical world. A few years later, it was clear that this was far
from the truth:

• Newton’s laws turned out to be a limiting case (for small velocities) of Einstein’s special
theory of relativity.

• Newton’s theory of graviatation was extended to (replaced by) Einstein’s general theory
of relativity.

• The discovery that the atom consists of a very small and compact nucleus surrounded
by pointlike electrons, and certain properties of the interaction between atoms and
radiation, led to the development of the theory of quantum mechanics.
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These theories and the development that followed later in the twentieth century have rev-
olutionized our physical picture of the world, and have led to a number of advances in our
understanding of atomic physics, nuclear physics, particle physics, astrophysics and cosmol-
ogy, and also within chemistry, biophysics and biology and of course also within solid-state
physics, including applications in technology.

Quantum mechanics contains a number of elements which are rather revolutionary com-
pared to classical mechanics and our classical way of thinking. Therefore we may state that
the “birth” of this theory was rather “painful” and took a long time, starting in 1900 and cul-
minating in 1925, when there was a sudden breakthrough. After that, it took only a couple of
years to obtain a fully developed theory. The reason for the difficult birth lies in the fact that
this theory not only disagrees with classical physics, but also is counter-intuitive; it does
not agree with the physical intuition which we develop based on our every-day experiences
with macroscopic phenomena.

In what follows we shall review the main events in the development of quantum mechanics,
and we shall see how the physics community gradually was forced to accept this revolutionary
physical theory:

1.1 Planck’s radiation law (1900)

The discovery of the radiation law is discussed in section 1.1 in Bransden & Joachain. (See
also 1.2 in Hemmer.) As explained there, a small opening to a cavity kept at a temperature
T will radiate as a black-body surface at this temperature:

Planck found an empirical formula for the spectral emittance (emitted energy flux per
unit area and unit frequancy) from a black surface, based on experimental results that had
just been obtained,

I(ν, T ) =
2πν2

c2

hν

ehν/kBT − 1
. (T1.1)

At equilibrium, and supposing that also the inside walls of the cavity are black, there must be
a relation between this spectral emittance from the walls and the spectral energy density
inside the cavity, u(ν, T ). It can be shown that I(ν, T ) = u(ν, T ) · c/4, so that

u(ν, T ) =
4

c
I(ν, T ) =

8πν2

c3

hν

ehν/kBT − 1
. (T1.2)

These two formulae are two equivalent ways of expressing Planck’s radiation law.
What was really remarkable with Planck’s empirical formula, was that it was a very good

fit to the experimental frequency distribution of the radiation, not only for one particular
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temperature; it did in fact fit to the distributions for a whole range of temperatures, and
this was very strange, considering the fact that the formula contains only one parameter,
beside the velocity of light c, Boltzmann’s constant kB and the temperature T . This was
the parameter h, introduced by Planck. Planck understood that this meant that that the
formula could be due to some underlying law, and immediately went to work trying to deduce
the formula theoretically. After a couple of months he succeeded in deriving the formula
using a certain physical model.

In this model, there is at equilibrium a constant exchange of energy between the radiation
field inside the cavity and oscillating charges in the walls. According to Maxwell’s theory,
an oscillating charge can radiate energy as well as absorb it. To explain the continuous
frequency distribution, Planck had to assume that the wall had “oscillators” with all kinds
of frequencies. Furthermore he had to introduce into his model an assumption which was
totally opposed to the principles of classical physics:

He had to assume that the energy of a given oscillator with frequency
ν was quantized, having the values nhν. Here ν is the frequency, n is
an integer and the proportionality constant h is the empirical parameter
mentioned above. This assumption implies that the energy is exchanged
in quanta hν between the radiation field and the oscillator.

By comparing with the experimental curves, Planck was able to determine his constant h
to h ≈ 6.6× 10−34 Js. Thus, Planck succeeded in deriving the radiation law, but he had to
sacrifice a basic classical principle, introducing the quantization described above. Planck
himself, being a truely “classical” physicist, described his quantization assumption as “an
act of desperation”.

A small exercise: Show that the total emittance I(T ) (radiated energy per
unit time and area) from a black surface at the temeperature T ,

I(T ) =
∫ ∞

0
I(ν, T )dν,

is proportional to T 4, that is, I(T ) = σT 4, and determine the proportionality
constant σ (which is called Stefan–Boltzmanns constant), given that∫ ∞

0
x3(ex − 1)−1dx = π4/15.

[Hint: Use x = hν/kBT as a new integration variable. Answer: σ = 5.670 ·
10−8 Wm−2K−4. See the table of physical constants at the end of these notes.]

1.2 Einstein explains the photoelectric effect (1905)

The photoelectric effect is described in section 1.3 (pp 12–13) in Hemmer, and in section 1.2
in Bransden & Joachain, which you should now read.

Compared to Plank’s assumption mentioned above, Einstein took a new step which
was for many years considered to be too radical: He assumed that the quantization had
something to do with the light itself, implying that light and other electromagnetic radiation
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consists of discrete quanta (light quanta, later christened photons by G.N. Lewis, in 1926)
with energy hν. This proposal was met with large skepticism, which can be illustrated by
the following citation from a proposal (in 1913) for Einstein’s membership in the Prussian
Academy of Sciences, signed by Planck and several other merited physicists: “In sum, it
can be said that among the important problems, which are so abundant in modern physics,
there is hardly one in which Einstein did not take a position in a remarkable manner. That
he might sometimes have overshot the target in his speculations, as for example in his light
quantum hypothesis, should not be counted against him too much. Because without taking
a risk from time to time it is impossible, even in the most exact natural science, to introduce
real innovations...”.

This skepticism even lasted after the work by Millikan in the period 1914 – 16. Millikan
obtained an accurate experimental verification of Einstein’s equation for the kinetic energy
of the emitted photo-electrons,

Ekin = hν −W,
and used his experimental data to obtain an independent determination of Planck’s constant,

h = 6.57× 10−34 Js.

This value deviates from the today’s accurate value,

h = 6.626 068 96(33)× 10−34 J s ≈ 4.136× 10−15 eVs,

by only 0.5 %. Millikan regarded this as a verification of Planck’s hypothesis, as we can
see from the following citation from one of his articles: “The photoelectric effect...furnishes
proof which is quite independent of the facts of blackbody radiation of the correctness of
the fundamental assumption of the quantum theory, namely, the assumption of a discontin-
uous or explosive emission of the energy absorbed by the electronic constituents of atoms
from...waves. It materializes, so to speak, the quantity h discovered by Planck through
the study of blackbody radiation and gives us a confidence inspired by no other type of
phenomenon that the primary physical conception underlying Planck’s work corresponds to
reality.”

But Einstein’s idea was very difficult to accept. In Millikan’s article from 1916 he states:
“ Einstein’s photoelectric equation...cannot in my judgment be looked upon at present as
resting upon any sort of a satisfactory theoretical foundation”, even though “it actually
represents very accurately the behavior” of the photoelectric effect.

Einstein, however, could not be stopped. After having completed his general theory of
relativity, he extended his hypotheses on light quanta in 1917:

A light quantum with energy E = hν is assumed to have a
momentum

p =
E

c
=
hν

c
=
h

λ
.

(T1.3)

The background for this proposal is:
(i) Firstly, it follows from Maxwell’s equations that an electromagnetic wave group

(pulse) has a field energy Efield and a field momentum pfield which satisfy the relation
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Efield = c|pfield|. The fact that electromagnetic radiation also contains a momentum |p| = E/c
was verified experimentally by E.F. Nichols and G.F. Hull in 1903. If the electromagnetic
pulse is to be regarded as a collection of light quanta (photons), then these quanta must also
carry a momentum, in addition to the energy.

(ii) Secondly, it follows from relativistic particle kinematics,

E =
mc2√

1− v2/c2
, p =

mv√
1− v2/c2

=⇒ E

p
=
c2

v
, E =

√
m2c4 + c2p2 , (T1.4)

that E/p→ c when m→ 0.
The reason that these hypotheses were met with such a large skepticism was that they

seemed to be in contradiction with all the knowledge that had been gained about the wave
nature of light. How could light be both a wave and a stream of particles? The natural
answer to this question was to discard Einstein’s photon hypothesis, and this was the ruling
opinion for several years after Millikan’s work. This easy way out of the problem was finally
blocked in 1923, through the discovery of the Compton effect.

A small exercise: From Einstein’s photon hypothesis and Planck’s radiation
law (T1.2) it follows that the number of photons per unit volume and frequency
in an oven at temperature T is n(ν, T ) = u(ν, T )/hν. Show that the number of
photons per unit volume, n(T ) =

∫∞
0 n(ν, T )dν, is

n(T ) = 2.029 · 107 T3 m−3 K−3,

and that the average energy of these photons is

E =
u(T )

n(T )
= 2.701 kB T,

given that
∫∞

0 x2(ex − 1)−1dx = 2.4041.

Another exercise: Show that a photon with wavelength λ has the energy

Eγ = 1.24 · 10−6 eVm

λ
. (T1.5)

[Hint: At the end of these notes you will find Planck’s constant in units of
both eVs and Js=Nms. Presently, you will find that is is most practical to use
h = 4.136 · 10−15 eVs.]
The work function W (that is, the binding energy for the most loosely bound
electrons) for cesium (Cs) and gold (Au) are respectively 1.9 eV and 4.8 eV.
Decide whether photoelectric emission is possible when visible light (0.4 µm <
λ < 0.7 µm) is incident on these two metals. [Hint: Show that the photon

energies for visible light lie in the range 1.77 eV
<≈ hν

<≈ 3.1 eV.]

Another small exercise: A 25-watt light bulb emits around 10% of its effect in
the visible region. Estimate roughly the number of photons emitted per second
in this λ-region. With night adaptation the eye can see a light source which is
so weak that around 5 photons pass the pupil per second. Assume a pupil area
of ∼0.5 cm2. How far away can the bulb be seen?
[Hint: Assume that there is no absorption between the bulb and the eye. Since
we want only an estimate, you can use a photon energy in the middle of the
visible spectrum, λ = 0.55µm. Answer: ∼ 2500 km.]



TFY4215/FY1006 — Lecturenotes 1 6

1.3 Compton’s exsperiment (1922–23)

The figure shows a sketch of Compton’s exsperiment. Monochromatic X-rays were scattered
on a piece of graphite. The scattered radiation was observed at an angle θ which could
be varied. The wavelength of this secondary radiation was observed, using so-called Bragg
scattering on a calcite crystal. The result was a sensation: Compton observed secondary
radiation with a wavelength λ′ larger than the primary wavelength λ, and the difference
λ′ − λ (the Compton shift) depended on the scattering angle θ.

This phenomenon could not be understood in terms of classical electromagnetic theory:
If the primary radiation is considered as an electromagnetic wave with wavelength λ and
frquency ν = c/λ, the oscillating electric field in the wave will cause the graphite electrons
to oscillate with the same frequency ν. According to Maxwell’s theory, these oscillating
electrons will radiate an electromagnetic wave with the same frequency and hence the same
wavelength as that of the primary wave. (This is analogous to the way an electric antenna
works.) However, this was not what Compton observed.

It should be noticed that the measurement of λ′, by scattering the secondary radiation on
the calcite crystal, is based on the wave nature of the radiation. Compton’s result, however,
can only be understood by accepting Einstein’s hypothesis: Let us consider the process as a
collision between a single particle-like light quantum (photon) with energy Eγ = hν = hc/λ
and momentum pγ and a single electron which is approximately free, being at rest before
the collision. Thus, before the collision the electron has the momentum p = 0 and the
energy E = mec

2. Since the secondary photon leaves the collision with a momentum p′γ
in the direction θ (the so-called scattering angle), we see that the electron necessarily must
receive a momentum p′ = pγ − p′γ.
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Thus the electron is sent away (“recoils”), with the momentum p′ and the energy E ′ =√
m2
ec

4 + c2(p′)2. This increase of the electron energy of course comes at the expence of
the photon energy; the secondary photon must be emitted with a lower energy and a larger
wavelength than the primary one, which is precisely what Compton observed.

This increase of the wavelength can be calculated, using the relativistic conservation laws
for energy and momentum:

hc

λ
+mec

2 =
hc

λ′
+ E ′ [(E ′)2 = (cp′)2 +m2

ec
4]

pγ + 0 = p′γ + p′.

Using these formulae, it is (in principle) a simple matter to show that 1

λ′ = λ+
h

mec
(1− cos θ), (T1.6)

which is known as the Compton relation. We notice that the Compton shift,

λ′ − λ =
h

mec
(1− cos θ) ≡ λC(1− cos θ), (T1.7)

is independent of the primary wavelength, but depends on the scattering angle θ. 2 After
doing this calculation and checking that his experiments agreed with the resulting formula
Compton could draw the following dramatic conclusion:

“The present theory depends essentially upon the assumption that each electron which
is effective in the scattering scatters a complete quantum (photon). It involves also the

1It is easy to derive the Compton relation. We start by solving the above equations for E′ and p′, and
then calculate (E′/c)2 − (p′)2, which is equal to (mec)

2:

E′2

c2
− (p′)2 =

[
mec+ h(

1

λ
− 1

λ′
)

]2
− (pγ − p′γ)2 = m2

ec
2.

By writing out the squares (where pγ ·p′γ = pγpγ′ cos θ) and using that pγ = h/λ and p′γ = h/λ′ you
will find that

2mehc(
1

λ
− 1

λ′
) +

2h2

λλ′
(cos θ − 1) = 0.

The Compton relation follows by multiplying this equation by λλ′/(2mehc).
2The quantity h/(mec) ≡ λC is characteristic for Compton scattering on electrons, and is known as

the Compton wavelength (for electrons). Its numerical value is

λC ≡
h

mec
= 2.426 310 238(16)× 10−12 m.
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hypothesis that the quanta of radiation are received from definite directions and are scattered
in definite directions. The experimental support of the theory indicates very convincingly
that a radiation quantum carries with it directed momentum, as well as energy.”

This was a sensational verification of Einstein’s hypothesis:

Light, and other electromagnetic radiation, not only has wave properties
(expressed in terms of the wave parameters λ and ν = c/λ), but also
particle properties, behaving as photons with energy hν and momentum
hν/c = h/λ.

(T1.8)

What was confusing in 1923, and is still a challenge, is the fact that it is not a question
of either/or when it comes to wave contra particle properties. What we have to accept,
is that light posesses both these properties. This is illustrated very clearly by Compton’s
experiment, where we have seen that the collision process can be explained in terms of
the particle properties, while the measurement of the secondary wavelength is done using
diffraction on a crystal. In this diffraction process, the periodic structure of the crystal acts
as a three-dimensional lattice, causing diffraction maxima in certain directions which depend
on the lattice spacing and the wavelength. Thus the diffraction depends on the wave nature
of the X-rays.

A small exercise: Write down the Compton relation for scattering of a photon
on a proton. How would you define the Compton wavelength for a proton?

After Compton’s experiment, and the explanation of this, the scientific community was
forced to accept that radiation has a dual nature; we have what is called a wave-particle
duality. The first step towards the discovery that also particles have such a dual nature, was
taken by Niels Bohr.

1.4 The Bohr model (1913)

We shall see later (after having learnt a bit of quantum mechanics) that Bohr’s atomic model
from 1913 is not an acceptable physical theory. Applied to the hydrogen atom it looked like
a success, but for heavier atoms it did not work. In spite of this it is instructive to consider
this model a bit more closely. This is because it contains a couple of fundamentally new
ideas which still stand as central aspects of quantum mechanics.

First a little bit about the

A. Background for Bohr’s model: Three central elements in the historic background
for Bohr’s model were

(i) Balmer’s formula for the visible lines of the hydrogen spectrum. While the emission
spectrum from a solid body is continuous (cf Planck’s radiation law), it was known from
early in the 19th century that the radiation from single atoms in a hot gas consists of a
set of discrete wavelengths; we have a line spectrum. Each atom has its own spectrum,
containing wavelengths which are characteristic for the given element. Spectroscopy may
therefore be used in chemical analysis.

These spectra actually carry information about the structure of the atoms, and were
one of the clues leading to the discovery of quantum mechanics. However, this was not
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understood before Niels Bohr entered the picture. An important point here is that there is
a system in the distribution of spectral lines. This was discovered by Balmer in 1885, who
found that a series of lines belonging to the visible part of the spectrum of hydrogen could
be systematized as follows:

1

λ
= R∞

(
1

22
− 1

n2

)
, n = 3, 4, 5, 6.

Here, R∞ is the so-called Rydberg constant, which was per 2010 determined experimen-
tally to be3

R∞ = 10.973 731 568 539(55)× 106 m−1.

I 1908, Paschen found a series in the infrared region,

1

λ
= R∞

(
1

32
− 1

n2

)
, n = 4, 5, 6, · · ·

Today we know that these results for the hydrogen spectrum can be generalized to

1

λ
= R∞

(
1

n2
− 1

m2

)
, n = 1, 2, 3, · · · , m = n+ 1, n+ 2, n+ 3, · · · . (T1.9)

Such a simple empirical formula, covering a large number of lines and containing only one
adjustable parameter (R∞) witnesses that there must exist an underlying physical law.

(ii) Rutherford’s model of the atom (1911): By bombarding a thin metallic foil with α
particles (helium nuclei), it was discovered in Rutherford’s laboratory in Manchester in the
years 1908–11 that some of the α particles were strongly deflected. Rutherfords calculations
showed that such a large deflection would be impossible if the positive charge of the metal
atoms (and of the α particles) were distributed fairly evenly over the whole atomic volume.
(Such an even distribution of the positive charge was one of the ingredients of Thompson’s
atomic model, which was popular in those days.) In 1911 Rutherford therefore proposed a
new atomic model, with the entire positive charge (and most of the atomic mass) concen-
trated in a small and very dense atomic nucleus, and with the electrons swirling around in
the remaining atomic volume. Thus he assumed thast the atom consists mainly of “empty
space”. 4 With such a small atomic nucleus and with an equally small α particle (helium
nucleus), the repulsive force between the projectile particle and the target particle will be
very large when the two particles come sufficiently near each other. This explains why the
deflection of the projectile can be very large in some cases (provided that the energy of the
projectile is sufficiently high).

3As of 2010, the Rydberg constant was the most accurately determined physical constant.
4Today we know that an atomic nucleus in general consists of Z protons and N = A− Z neutrons,

where Z is the atomic number, A is the nucleon number and N the netron number. The netrons were
“proposed” by Rutherford (to explain the fact that nuclei have a charge corresponding to Z proton and a
mass corresponding approximately to that of A protons) and were discovered by James Chadwick in 1932.
The nuclear radii vary from 1 to 10 femtometer (1 fm=10−15m) and are approximately given by the empirical
formulae Rn = k ·A1/3, where A is the nucleon number and the empirical coefficient k lies in the range
1–1.2 fm, depending on how one defines such nuclear “radii”. This means that the nuclear radius is roughly
a factor 100 000 smaller than the atomic “radius”.
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(iii) Planck’s quantization condition for the energy transfer between matter and radiation:
The energy is radiated or absorbed in quanta hν = ∆E, where ν = c/λ is the frequency of
the radiation and ∆E is the energy loss or gain for matter.

B. Bohr’s model. Bohr built his model on the following ideas:

1. The idea of stationary states: (T1.10)

Bohr assumes that the atom can exist in a discrete set of states of motion, each with a
well-defined energy. This implies, firstly, a quantization principle: The energy can only
take a discrete set of values. This of course contradicts one of the basic principles of classical
physics: In a one-electron atom, e.g., the electron is moving in a 1/r2 force field, and just
like for a satellite moving in the field of the earth, a continuum of energies should then be
allowed. Secondly, Bohr’s assumption breaks with classical physics on another point. Due
to the 1/r2 force, the electron is being accelerated the whole time. According to Maxwell’s
equations, it should then radiate energy continuously, and thus gradually loose its energy,
spiralling towards the nucleus. Bohr’s assumption implies that no radiation is emitted when
the atom is in one of its stationary states, so that the energy is kept constant in such a state.
(This is part of the meaning of the word “stationary”.)

2. The idea of the quantum leap (or jump): (T1.11)

With the assumption above, Bohr could interprete the discrete sets of spectral lines as
the result of the atoms making sudden quantum leaps, jumping between discrete energy
levels, and emitting an energy quantum hν = ∆E, where ∆E is the difference between the
energies before and after the jump, in agreement with Planck’s assumption. For hydrogen,
with the observed lines (T1.9), these energy quanta would be

hν =
hc

λ
= hcR∞

(
1

n2
− 1

m2

)
, n = 1, 2, 3, · · · , m = n+ 1, n+ 2, n+ 3, · · · .

Bohr’s assupmtion thus corresponds to the following experimental values for the discrete
energy levels of hydrogen:

En = −hcR∞
1

n2
, n = 1, 2, · · · .

Here the numerical value of the constant hcR∞ is approximately 13.6 eV.
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The two ideas above, of stationary states and quantum jumps, have turned out to
survive; they are central aspects of quantum mechanics. However, in order to explain why
the atomic energies are discrete, and in order to be able to predict the size of these energies,
Bohr introduced two additional assumptions, which turned out to be wrong.

3. The electron in a hydrogen atom is moving in circular orbits, respecting Newton’s laws.
In the hydrogen atom, the potential energy of the electron in the field of the proton is

V (r) = −e e

4πε0r
≡ −k

r
, with k ≡ e2

4πε0
.

The force on the electron then is

F = −∇V (r) = − e2

4πε0r2
êr

where the minus sign means that the force is directed opposite to the unit vector êr, that
is, towards the proton. For a circular motion, it then follows from Newton’s second law that
the centripetal acceleration is

a =
v2

r
=
|F|
me

=
e2

4πε0mer2
≡ k

mer2
.

It is then straghtforward to show that the velocity v, the angular momentum L = mvr and
the kinetic and total energies K and E are proportional to respectively r−1/2, r1/2 and
r−1 : 5

v(r) =

√
k

mer
∝ r−1/2,

L = mevr =
√
kmer ∝ r1/2,

K(r) = 1
2
mev

2 = 1
2

k

r
∝ 1/r,

E(r) = K(r) + V (r)
(
= 1

2
V (r) = −K(r)

)
= −1

2

k

r
∝ 1/r.

This classical calculation allows all values (> 0) for the orbital radius r and (< 0) for the
energy E. In order to obtain the all-important energy quantization, Bohr therefore needed
one more (new and revolutionary) assumption. After some trial and error arrived at the
following one:

4. The angular momentum of the electron must be discretized, and can only be a multiple
of h/2π ≡ h̄, that is, 6

L = mvr = nh̄, n = 1, 2, · · · .

According to the relations above, such a quantized angular momentum corresponds to quan-
tized values also for the radius and the energy:

L =
√
kmer = nh̄ =⇒ r = rn =

n2h̄2

kme

= n2 4πε0h̄
2

e2me

=⇒

5Note that with another definition of the coefficient k, these calculations also hold for a satellite moving
in a circular orbit around the earth.

6In modern quantum mechanics, the quantity h/2π ≡ h̄ (“h-bar”) occurs much more frequently than
Planck’s constant h itself.
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En = − k

2rn
= −k

2me

2h̄2

1

n2
= −1

2

(
e2

4πε0h̄c

)2

mec
2 1

n2
, n = 1, 2, · · · .

In the formula for the energies, the quantity

mec
2 = 510 998.910(13) eV ≈ 0.511 MeV (electron rest energy)

has the dimension of an energy. This means that the quantity in parantheses must be a
dimensionless constant. This constant plays a very important role in quantum physics, and
is called the fine-structure constant:

α ≡ e2

4πε0h̄c
=

1

137.035 999 679(94)

(
fine-structure

constant

)
. (T1.12)

Inserting numbers, we now find that the lowest energy according to Bohr’s theoretical model
is

E1 ≈ −13.6 eV,

corresponding precisely to the lowest experimental energy (the “ground-state” energy).
Also the smallest radius (of the ground state) does in fact play an important role in

quantum mechanics (as we shall see later) and is called the Bohr radius:

a0 ≡
4πε0h̄

2

e2me

= 0.529 177 208 59(36)× 10−10m (Bohr radius).

(T1.13)
What was very sensational with Bohr’s model was that he was able to “explain” the 1/n2

dependence of the experimental hydrogen energies without introducing any new parameter
— Planck’s constant did the job not only for light, as Planck and Einstein had found, but
also for the atom. When Einstein was told about this new theory, he exclaimed: “Then this
is one of the greatest discoveries”. (Since then we have learnt that Planck’s constant always
enters in quantum mechanics, whether we consider particles or radiation, or both for that
matter.)

Now we must hasten to add that in spite of this success, assumptions number 3 and 4
in Bohr’s theory have turned out to be wrong. It is correct that the angular momentum
is quantized, and it even turns out that h̄ plays an important role in this quantization.
However, the ground state turns out to have zero angular momentum (not h̄ as in Bohr’s
model). What is even more important is that the notion of classical orbits for the elctrons
has to be discarded. Thus, to explain the stationary states of e.g. the hydrogen atom, we
are today using a quantum-mechanical theory where the wave nature of the particles plays
the central role.

The classical-mechanical way of thinking (which is so tempting
for all of us), where the particle has a well-defined orbit r = r(t),
is wrong when it comes to phenomena on the atomic or sub-
atomic scale.
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It took several years after Bohr’s discovery in 1913 before this became clear. It was
soon found that the theory ran into difficulties when applied to atoms with more than one
electron. Thus, the theory had little “predictive power” (and that is a bad sign for any
physical theory). However, it took many years to realize that the theory had to be given up
altogether. The decisive step came with

1.5 de Broglie’s hypothesis (1923)

Soon after the confirmation of the wave-particle duality of light by Compton’s experiment,
the French physicist Louis de Broglie came up with a revolutionary proposal: What if also
particles posess a wave-particle duality, with the same relationbetween wave and particle
parameters as for light (proposed by Einstein)? :

λ =
h

p
, ν =

E

h
(de Broglie’s hypothesis). (T1.14)

de Broglie’s proposal implied that a particle with momentum p and energy E should have
some kind of wave behaviour, corresponding to a wavelength λ and a frequency ν.

de Broglie’s hypothesis was not taken seriously. Einstein was one of the few who con-
sidered it as an interesting idea. However, de Broglie felt that his idea was supported by
the following fact: If one requires that Bohr’s circular orbit cover an integre number of
wavelengths,

2πr = nλ = nh/p, n = 1, 2, · · · ,

then it follows that

(L =)pr =
nh

2π
= nh̄,

which reproduces Bohr’s quantization condition.
As we shall see, in spite of the skepticism de Broglie’s hypothesis was the starting point

of a whole avalanche of discoveries, nothing less than a scientific revolution. During a hectic
period of 2–3 years (1924–27) the hypothesis was confirmed, through the development of
quantum mechanics as a physical theory and through experimental verifications. The change
of paradigm which started with the work of Planck, Einstein and Bohr, was completed in
these years.

The first direct exsperimental verifications of de Broglie’s hypothesis were found in 1926–
27 by Davisson and Germer and by Thomson (see footnote page 15 in Hemmer, and see
chapter 1 in B&J). D & G scattered electrons on a nickel crystal, and observed that the
scattered intensity showed a strong variation with the angle, in analogy with what we see
when X-rays are scattered on a three-dimensional crystal lattice. These variations could
be explained by associating with the electrons a wavelength given by de Broglie’s proposal,
much the same way as we explain X-ray scattering on a crystal.

However, before this experimental verification there was an important theoretical break-
through by the Austrian physicist Erwin Schrödinger, who decided to try to find a wave
equation for “de Broglie’s waves”. Towards the end of 1925 he succeeded in finding a wave
equation which turned out to reproduce Bohr’s results for the energy levels of the hydrogen
atom.
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Unlike Bohr’s theory, Schrödinger’s wave equation turned out to have large predictive
power; it described heavier atoms well and also worked for other systems. In fact, this
equation plays a role in quantum mechanics which is comparable to the role played by
Newton’s second law in classical mechanics. This became clear almost immediately, and
proved that de Boglie was right: Particles have wave properties in addition to their particle
properties.

Before introducing this equation, we shall consider an experiment which gives a very
direct proof of the wave nature of particles, namely a two-slit experiment with electrons. This
experiment played absolutely no role in the historical development of quantum physics; it
was performed as late as in 1961. It is included here because it demonstrates the wave nature
much more clearly and is much easier to interpret than Davisson and Germers exsperiment.

1.6 The wave nature of particles

The wave nature — both of light and particles — can be illustrated very clearly by so-called
double-slit experiments. We shall look more closely at some experiments of this kind, because
they in a very direct way challenge our classical (and “macroscopic”) way of thinking, and
illustrate the difference between classical and quantum physics.

1.6.a A double-slit experiment with surface waves in water

(not very challenging, but used to introduce some concepts).

A wave with wavelength λ is incident on a “dam” with two openings 1 and 2, with a width
b(<< λ) and a distance d apart.

With 1 or 2 open we observe at the point P (far away from the openings) a a wave
“height” (or wave function)

hi = A(θ) cos(kri − ωt), (i = 1, 2),

where A(θ) is a slowly varying function of θ. This function decreases with the distance as
1/
√
r. The intensity (the energy flux) then is proportional to 1/r:

Ii ∝ h2
i

t ∝ 1/r,

as it should be for this wave which is spreading out as “half circles” (from opening 1 or 2).
Note that the intensity is proportional to the square of the wave height (wave function),
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averaged over time. This wave function is a solution of the wave equation for surface waves
in water.

This wave equation for surface waves is approximately linear for small wave heights.
Therefore, if we let both 1 and 2 be open, the resulting wave height (wave function) at
the point P will be given approximately by the sum of h1 and h2 (cf the superposition
principle):

h12 ≈ h1 + h2 = A(θ)[cos(kr1 − ωt) + cos(kr2 − ωt)].

As you know, we then get an interference pattern behind the dam, with constructive inter-
ference (h12 = 2h1 and I12 = 4I1) where the path difference between the two waves is an
integer number of wavelengths,

r2 − r1 = d sin θ = nλ,

and destructive interference (h12 = 0 and I12 = 0) where d sin θ = (n+ 1
2
)λ. (See the

figure.)

1.6.b A double-slit experiment with monochromatic light (Young,
1802)

With b << λ and 1 or 2 open we again get slowly varying intensity distribution Ii(θ) (see
the dashed line in the figure). With both 1 and 2 open, we get the same behaviour of I12 as
for the water waves (solid line in the figure). Based on such an experiment, Young concluded
in 1802 that light must be a wave phenomenon. This was a decisive blow against Newton’s
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corpuscular theory of light, which had been dominating for a century. We should note that
Young was not able to decide what kind of wave this was. It took sixty years before it was
understood by Maxwell that the interference and diffraction effects observed by Young and
Fresnel (and others) could be understood in terms of interference of electromagnetic waves,
and that the wave functions which then interfere are classical electromagnetic fields.

Long after Young (well into the last century in fact) it was discovered that this kind of
experiment can also be used to demonstrate the non-classical particle nature of light: If
the intensity of the incident light is gradually decreased, the intensity distribution I12(θ) on
the screen of course also decreases in the same way, but the form of this distribution is the
same, as long as we are able to observe it. At some point it becomes invisible to our eyes,
but it can still be observed, e.g. by the use of a photographic plate and sufficiently long
exposure time. (This technique is used in astronomy to observe very distant and faint light
sources.) A single photon can then darken a point on the plate. Such a system works even if
the intensity is so low that we register only one photon per day (e.g.). This way, the particle
nature of light becomes very evident.

The fact that a single photon is registered at some definite point on the plate (instead of
being “smeared out” in any manner), in a way does not agree with the classical wave theory,
which predicts an intensity distribution I12(θ). This is an unavoidable consequence of the
particle nature of light, which clearly is a quantum (as opposed to classical) phenomenon.

Thus wave theory can not predict what happens with a single photon (or with two, or
with three,...). We need to collect a large number of photons before we begin to see that the
interference pattern emerges. Thus we can conclude that:

The classical interference pattern I12(θ) is valid in the sense that
it gives the probability distribution of the photons on the
screen (suitably normalized). The probability of observing a sin-
gle photon at an angle θ then is

P (θ) ∝ I12(θ).

(T1.15)

With this probability interpretation of the classical wave theory, there is no contradiction
between the wave properties and the particle properties of light. Both properties are present.
The wave property determines the interference (both here and in scattering on a grating or
on a crystal). The particle property shows up in the detection, and also in e.g. Compton
scattering.

This probability theory, as already stated, does not allow us to predict what happens
with a single photon. And there is no other theory that can help us with this. Thus the
photons, which do not differ in any way, experience unpredictable and different fates behind
the double-split screen. This element of arbitrariness or unpredictability is a central feature
of quantum physics, which most of us have some difficulties in accepting. 7

This has been the source of much debate through the years. Einstein, for example, who
was one of the fathers of quantum theory, could never reconcile himself with this feature of

7The unpredictability feature of quantum physics is also evident if we observe an ensemble of α-radioactive
nuclei, e.g. of the isotope 226Ra. These unstable nuclei, which decay by emitting an α particle (helium
nucleus),

226
88Ra =⇒ 222

86Rn + 4
2He,
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quantum mechanics. He is often cited for the following statement: “God does not throw
dice”. There have been many attempt to modify the theory to remove the unpredictability.
(Keywords here are “hidden variables” and Bell’s inequalities.) So far, it seems that this
element of quantum mechanics can not be removed. It is something we have to live with.

1.6.c A double-slit experiment with electrons

The double-slit experiment with electrons played absolutely no role in the development of
quantum mechanics, but is included here because it shows the wave nature of particles very
clearly. 8

In order to get an interference pattern for visible light one needs to work with a slit
width comparable with the wavelength, that is,

<∼ 1 micrometer. If one wants to make a
similar experiment with particles, much smaller slit widths are required than for light, and
similarly for the distance d between the slits. This is because the de Broglie wavelength
for particles are very small. Thus, for non-relativistic electrons we find from de Broglie’s
formula a wavelength

λ =
h

p
=

h√
2meEkin

=
h

mec

√
mec2

2Ekin

= λC

√
511000 eV

2Ekin

,

that is,

λ =
h

p
= 12.264 Å

√
1 eV

Ekin

(
de Broglie wavelength
for non-rel. electrons

)
. (T1.16)

Even with a kinetic energy as small as 1 eV, the de Broglie wavelength thus is as small as
12 Å. So slow electrons are very difficult to handle experimentally. In practice one must
therefore work with faster electrons, with wavelengths which are even smaller. This is why
the first double-slit experiment with electrons that I have heard about was done as late as
in 1961 (C. Jönsson).

are completely identical. Still they do not decay simultaneously. We can measure the average lifetime, which
is 1620 years, and we can observe the distribution of the lifetimes. But we can not predict how long a single
nucleus will survive. Starting out with a large number, we can state that the expected number (surviving)
after 1620 years is reduced by a factor 1/e. After another 1620 years the number is reduced by another
factor 1/e. In fact at any point in time, the laverage lifetime of those who have survived is 1620 years. Thus,
there is no difference between those who died early and those who survive for a long time. This of course is
not very easy to understand intuitively.

8As mentioned earlier, the wave nature of electrons was demonstrated in experiments carried out in
1926–27 by Davisson & Germer and by G.P. Thomson.
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The result of that experiment is the same as for light: With one of the slits open one
gets a broad intensity distribution I1(θ). With both slits open, one observes an interference
pattern, and this pattern is the same whether one uses a very high flux of incoming electrons
or let the electrons come one by one. (See the figure above.) Thus for certain values of θ no
electrons are observed (that is, fewer than with only one slit open), while for other values
one gets up to four times as many as with only one slit open.

The only possible explanation of this interference pattern in the electron distribution is
that we again with a wave phenomenon. By measuring the distance between the interference
minima, one can find the wavelength λ of these waves. This wavelength comes out in
agreement with de Broglie’s formula.

The question then is: What kind of waves are interfering in this case? Here we find
ourselves in the same situation as Young and Fresnel in the early 1800s. These gentlemen
did not know that the light in Young’s experiment could be associated with classical elec-
tromagnetic waves and that the wave function was the electric field. Therefore they had
to invent abstract wave functions, which were added and squared to obtain the observed
intensity distribution I12(θ).

That is precisely what we are now forced to do for the electrons: With the beam of
electrons which are incident on the two-slit screen from the left we associate an abstract
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wave function, a plane harmonic wave 9, 10

Ψ = C exp[2πi(k̂·r/λ− νt)] = C exp[i(k·r− ωt)] = C exp[ip·r− Et)/h̄].

Behind the two slits we will then have two (equally abstract) cylindrical waves,

Ψi = A(θ)ei(kri−ωt), i = 1, 2.

By superposing these and taking the absolute square,

|Ψ12|2 = |Ψ1 + Ψ2|2,

we get a function which reproduces the form of the observed interference pattern.
Again we note that each electron is observed at some point (e.g. darkening a point on

a photographic plate). A single electron gives no interference pattern, only one point. The
interference pattern emerges only after a large number of electrons have passed the slits.
(See, e.g. the illustration p 18 in Hemmer, or p 54 in B&J.) Thus our abstract wave function
does not predict where a single electron will be observed. However, this wave function leads
to the correct probability distribution P (θ) ∝ |Ψ12|2, in analogy with the situation for
light.

Thus, the bad news is that we are forced to accept a theory which gives probabilistic
predictions. The good news is that light quanta and particles at least in this context seem
to behave much the same way. (However, here we must hasten to add that when we study
this in more detail, there are very significant differences between the quantum-mechanical
descriptions of light and matter.) Thus, for electromagnetic radiation, Maxwell discovered
that Young’s abstract wave function could be replaced by the electric field, which is in
principle a measurable quantity (for macroscopic fields). For particles, it turns out that the
wave function Ψ introduced above can not be measured.

We must therefore get used to the fact that the wave function Ψ is an
abstract quantity, which exists only in our theoretical description, and
which is not a part of the physical system we are considering.

(T1.17)

Is the electron a wave or a particle? The answer is that it has wave nature, e.g. in the
sense described above. But it also has a particle nature, which manifests itself e.g. when
we try to observe it, for example with the photographic plate, or in some other way. Thus,
for electrons (and other particles) we have a wave-particle duality, similar to that found for
photons.

9We shall explain later why we this time are using a complex wave function, instaed of cosine or a sine.
10Expressed in terms of the wave number k and the angular frequency ω, de Broglie’s hypothesis, λ =

h/p and ν = E/h, can be stated on the simple form

k =
2π

λ
=

2πp

h
≡ p

h̄
, ω = 2πν =

2πE

h
=
E

h̄
,

where

h̄ ≡ h

2π
(“h-bar”).

The direction of propagation k̂ is the direction of the incoming electron beam: p = pk̂ = h̄k k̂ ≡ h̄k.
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Does each single electron pass through one of the slits or through both? Here it is difficult
to give a clear answer. What can be stated with certainty, is that both slits have to be open if
we want to observe the interference pattern I12(θ) ∝ |Ψ12|2. It is also a fact that nobody has
observed “half” electrons (or “half” photons). Thus there is no indication that the electron
can be divided into two parts, one part travelling through slit 1 and the other through slit
2. We can of course modify our experiment so that we monitor whatever passes through
slit 1 and 2. Experiments (with one electron at a time) then show that the electron either
passes through 1 or 2, not through both at the same time. However, with an experiment
which allows such a monitoring, it turns out that there is no interference pattern; we get
the same smooth distribution as with only one open slit. Thus we have to conclude that
in an experiment where the interference pattern is observed, we are not able to answer the
question about which slit the electron passed.

This is only one of many examples where questions which seem to be perfectly reasonable
according to classical physics and our “macroscopic” way of thinking, can not be answered
in the submicroscopic and quantum-mechanical world.

A small exercise:

a. Calculate the de Broglie wavelength λ for electrons with a kinetic energy of
200 eV. [Answer: 0.8762 Å.]

b. Suppose that electrons in an old-fashioned TV tube have a kinetic energy
20 keV, that is a factor 100 higher than in the previous question. What is then
the (non-relativistic result for) the wavelength in this case? [Answer: A factor
10 smaller than in the previous case.]

c. Use the relativistic formula p =
√
E2/c2 −m2

ec
2 (where E = Ekin+mec

2) to

show that the ratio between the relativistic (i.e. correct) value of the momentum

p and the non-relativistic one (p =
√

2meEkin) is
√

1 + Ekin/2mec2. How big is

the relative error of the wavelength in question b? [Answer: The correct value
for the wavelength is about 1 percent smaller than the value found in question
b.]

1.7 Wave equations. Motivation for Schrödinger’s equa-

tion

Surface waves in water are desribed by a certain wave equation. Radio waves, light waves
and other electromagnetic waves are in general described by the so-called classical wave
equation, which can be deduced from Maxwell’s equations. It is then natural to pose the
following question (as Schrödinger did in 1925): What is the wave equation that has de
Brogle’s harmonic waves as solutions?
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1.7.a Free particle, with sharp momentum p = êxpx + êypy + êxpz
and energy E = p2/2m

For a free particle, with well-defined momentum p and energy E = p2/2m — e.g. the
elctrons incident on the two-slit screen — we shall see that it is easy to find a suitable wave
equation. We saw that de Broglie’s hypothesis,

k = p/h̄ and ω = E/h̄, (de Broglie’s hypothesis) (T1.18)

corresponds to a plane, harmonic wave with the form

Ψ(r, t) ∝ ei(k·r−ωt) = ei(p·r−Et)/h̄ = ei(pxx+pyy+pzz−Et)/h̄.

Like Schrödinger we can ask ourselves: What is the simplest differential equation that is
satisfied by this plane wave Ψ? To find the answer, we shall introduce a few mathematical
operators which turn out to play central roles in quantum mechanics, namely

p̂x ≡
h̄

i

∂

∂x
, p̂y ≡

h̄

i

∂

∂y
and p̂z ≡

h̄

i

∂

∂z
. (T1.19)

A small exercise:
A) When an operator acts on a function, the result usually is a new func-
tion. As an example, you should let the operator ∂/∂x act on the functions
exp(−x2), sin kx and cos kx.
B) In some cases you will find that an operator acting on some function results
in the same function multiplied by a constant. This function is then called an
eigenfunction of the operator in question, and the constant is called an eigen-
value of the operator. As an example, show that exp(ikx)[= cos kx+ i sin kx] is
an eigenfunction of the operator p̂x = (h̄/i)∂/∂x, and find the eigenvalue.
C) Show that the function e−x

2/2 is an eigenfuntioon of the operator ĥ = −1
2
d2/dx2 + 1

2
x2

and determine the eigenvalue.

Applying the operator p̂x on the function Ψ, we see that

p̂xΨ =
h̄

i

∂

∂x
ei(pxx+pyy+pzz−Et)/h̄ =

h̄

i

ipx
h̄

Ψ = pxΨ. (T1.20)

This equation is a so-called eigenvalue equation, on the form

Operator ·Ψ = eigenvalue ·Ψ. (T1.21)

It states that the function Ψ is an eigenfunction of the operator p̂x with an eigenvalue
equal to the momentum component px. In the same manner, we find that

p̂yΨ = pyΨ, p̂zΨ = pzΨ and p̂Ψ = pΨ,

where 11

p̂ ≡ êx
h̄

i

∂

∂x
+ êy

h̄

i

∂

∂y
+ êz

h̄

i

∂

∂z
≡ h̄

i
∇ and p = êxpx + êypy + êzpz. (T1.22)

11Here, êx etc are unit vectors, while the “hat”̂over p means that p̂ is an operator.
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These eigenvalue equations play a very important role in quantum mechanics, and you should
bear them in mind:

de Brogle’s abstarct plane harmonic wave Ψ, which “describes” a
particle (or particles) with sharply defined momentum p, with com-
ponents px, py, pz, is an eigenfunction of the operators p̂, p̂x, p̂y, p̂z.
The eignvalues are the sharp momentum values p, px, py, pz.

(T1.23)

We call these operators momentum operators. We can also introduce an energy oper-
ator,

Ĥ ≡
p̂2
x + p̂2

y + p̂2
z

2m
=

p̂2

2m
= − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
= − h̄2

2m
∇2,

which if possible plays an even more central role in the theory. Since p̂2
xΨ = p̂x(pxΨ) = p2

xΨ,
we obviously have

ĤΨ =
p2
x + p2

y + p2
z

2m
Ψ = EΨ.

Thus Ψ is an eigenfunction of the operator Ĥ with the (kinetic) energy as eigenvalue. During
this course, we shall get very well acqainted with the energy operator, which is in general
called the Hamilton operator, or simply the Hamiltonian. (Therefore the symbol Ĥ.)

We should also notice that Ψ [proportional to exp(−iEt/h̄)] is an eigenfunction of the
operator ∂/∂t:

∂

∂t
Ψ = −iE

h̄
Ψ.

Including an extra factor ih̄, we see that

ih̄
∂

∂t
Ψ = EΨ.

Thus, comparing with the relation ĤΨ = EΨ, we discover (as Schrödinger did) that de
Broglie’s plane wave Ψ satisfies the following partial differential equation:

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ.

(
Schrödinger’s equation

for a free particle

)
(T1.24)

This is the Schrödinger equation for a free particle, the simplest equation satisfied by
de Broglie’s plane waves. It has turned out that this simplest equation is also the one that
works (in non-relativistic quantum mechanics).

An important point is to note how the imaginary unit i entered in the ”derivation”
above. We note that the appearence of the factor i is is an unavoidable consequence of
tha fact that the non-relativistic energy-momentum relation E = p2/2m is linear in E
and quadratic in p. This is what leads to a complex wave equation and complex de Brogle
waves. The real and imaginary parts of de Broglie’s wave Ψ do not satisfy this equation
separately. Thus we are forced to work with a complex wave function.
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The equation above is easily generalized to a case where the particle is moving in a
constant potential V , so that12

E =
p2
x + p2

y + p2
z

2m
+ V (V = constant).

Following de Broglie’s recipe, we again set Ψ = exp[i(p·r− Et)/h̄], and find that Ψ
now is an eigenfunction of the Haqmiltonian Ĥ = −(h̄2/2m)∇2 + V,

ĤΨ =

(
− h̄2

2m
∇2 + V

)
Ψ = EΨ,

while

ih̄
∂Ψ

∂t
= EΨ,

as before. Thus, the plane wave Ψ in this case satisfies the following Schrödinger equation:

ih̄
∂Ψ

∂t
=

(
− h̄2

2m
∇2 + V

)
Ψ.

We note that the recipe for arriving at the Hamiltonian

Ĥ =
p̂2
x + p̂2

y + p̂2
z

2m
+ V = − h̄2

2m
∇2 + V

is as follows: Express the classical energy (K + V ) in terms of coordinates and momenta.
Then replace the momentum px by the corresponding momentum operator p̂x = h̄

i
∂
∂x

, etc.

1.7.b Particle influenced by a force F(r) = −∇V (r)

Here, Schrödinger was faced by a challenge. In a force field, a particle with well-defined
energy E will have a variable momentum

|p(r)| =
√

2m[E − V (r)],

according to classical mechanics. de Broglie’s recipe then becomes useless; the definition of a
wavelength requires a harmonic wave, which is relevant only in force-free space. Schrödinger
proposed the following way out of this problem: Let us try with a wave equation with the
same form as above,

ih̄
∂Ψ

∂t
=

(
− h̄2

2m
∇2 + V (r)

)
Ψ ≡ ĤΨ (Schrödinger’s equation),

(T1.25)
where now V (r) now depends on r. Schrödinger at once went ahead to test this simple
hypothesis, today known as the (time-dependent) Schrödinger equation, by applying it to
the fundamental question of atomic physics at that time:

What is it that keeps atoms from ”imploding”, in the sence
that the electrons ”fall in” towards the nucleus, because of
the attraction between positive and negative charges?

12In quantum mechanics it is customary to refer to the potential energy simply as the potential.
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More specifically, what is it that keeps the electron of the hydrogen from ”falling” into the
proton, under continuous emission of radiation, ending up with an ”atom” with the same
size as the proton (∼ 10−15 m), as we would expect from classical mechanics and classical
electrodynamics?

The Schrödinger equation turned out to be the answer to this and many more questions
connected to quantum physics, and it did not take long before quantum mechanics was
established as a physical theory.

In 1925, before Schrödinger’s work, it was clear that Bohr’s idea about stationary states
with quantized energies e.g. for the hydrogen atom could be regarded as an experimantal
fact. In each such state the energy of the hydrogen atom is well-defined (sharp), given by
one of the values

En = −1
2
α2mec

2

n2
, n = 1, 2, 3, · · · . (T1.26)

The state with the lowest energy, E1 = −13.6 eV, is called the ground state. A hydrogen
atom can stay in the ground state forever, if it is not disturbed. But atoms can also be
excited, e.g. to the first excited energy level, E2 = E1/4 ≈ −3.4 eV, by radiation with
photons with suitable energy hν = E2 − E1, or via thermal excitation (hot gas). Excited
atoms will sooner or later jump back to lower-lying levels, under the emission of photons
carrying the excess energy. As an example, Balmer’s spectral lines are due to transitions
between the levels En and the level E2 (corresponding to photons in the visible region of the
spectrum). Such transitions happen suddenly, in agreement with Bohr’s idea of quantum
jumps.

Equally clear in 1925 it was that the remaining aspects of Bohr’s model were not valid. In
particular, the idea of circular (and later elliptical) orbits had turned out to be unsuccessful
for atoms with more than one electron. It was therefore natural for Schrödinger to investigate
if his wave equation could be applied to atoms.

Schrödinger attacked the hydrogenatom (the simplest one), which somewhat simplified
can be considered as an electron of mass me moving in the electrostatic field from the
”approximately infinitely heavy” proton. This field corresponds to an electrostatic poten-
tial U(r) = e/(4πε0r). The potential energy of the electron (simply called the potential in
quantum mechanics) then is13

V (r) = −eU(r) = − e2

4πε0

1

r
(Coulomb potential).

Schrödinger started by searching for solutions of the eigenvalue equation

Ĥψ(r) =

(
− h̄2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r)

(
Schrödinger’s time-

independent equation

)
,

(T1.27)
which is known as Schrödinger’s time-independent equation. For each such energy
eigenfunction ψ(r) that can be found, it is easy to see that the function

Ψ(r, t) = ψ(r)e−iEt/h̄

13We choose to set the potential equal to zero at r = ∞. This means that bound states correspond to a
negative potential energy, and also to a negative total energy E = K + V .
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satisfies the time-dependent Schrödinger equation. [Check this.] To find these eigenfunctions
(ψ(r)) is a purely mathematical task, which Schrödinger solved readily, and which we too
shall solve not as fast later in this course.

It turns out that the equation above has eigenfunction solutions for all energies E > 0.
For negative erergies, on the other hand (corresponding to bound states of the electron and
the proton), Schrödinger found that this equation has energy eigenfunction solutions only
for a discrete set of energy eigenvalues, and this set turned out to be precisely the set
of ”experimental” energies mentioned above!

We shall study these solutions in great detail later in the course, so let us here try only
to convey a rough idea about how the quantum-mechanical description of the hydrogen
atom works. For the lowest energy, E1 = −13.6 eV, Schrödinger found one eigenfunction
of the energy operator Ĥ, on the form

ψ1(r) = C1e
−r/a0 with a0 ≡

4πε0h̄
2

e2me

= Bohr radius. (T1.28)

As we have seen above, this means that the wave function

Ψ1(r, t) = C1e
−r/a0e−iE1t/h̄ (T1.29)

is a solution of Schrödinger’s time-dependent equation. Thus the radius a0 of Bohr’s inner-
most circular orbit plays a role also in Schrödinger’s solution. We note that this is a very
different role.

Here, r is the distance from the proton to the electron. We note that this wave function
is spherically symmetric (depends on r but not on angles). The time dependence is given
by the factor exp(−iE1t/h̄), which is a complex number running around the complex unit
circle, with absolute value | exp(−iE1t/h̄)| = 1. The spatial factor e−r/a has its maximal
value when the distance r is equal to zero. It is important to note that Schrödinger’s time-
independent equation has no eigenfunction with a lower energy than E1. For the next lowest
energy, E2 ≈ −3.4 eV, Schrödinger found four infependent eigenfunctions. Three of these
depend both on r and on the angles (θ, φ).

Thus, Schrödinger found that his time-dependet equation has a special set of solutions,
on the form Ψ(r, t) = ψ(r)e−iEt/h̄, which implies that these are also eigenfuntions of the
energy operator Ĥ. It was of course very promising that the energy eigenvalues are precisely
the discrete energies which are observed experimentally for the stationary hydrogen states.
These are simple mathematical facts, which may be somewhat unfamiliar for us presently,
but which are easy to digest when we get some more experience.

It was much more challenging in 1925 (and still is) to come to grips with the physical
interpretation of these mathematical facts. We understand that the strange wave-function
solution Ψ1(r, t) of Schrödinger’s time-dependent wave equation must have something to do
with the stationary ground state of the hydrogen atom. But what is the connection between
this strange function and the physical state?

This was not clear to Schrödinger either. However, after a while (in 1926) Max Born
came up with a constructive suggestion. He proposed that the absolute square |Ψ1(r, t)|2
could be interpreted as a probability density for the position of the electron. (Remember
the corresponding interpretation in our discussion of the double-slit experiment.) Since the
phase factor exp(−iE1t/h̄) is a number on the unit circle in the complex plane, the absolute
value of this exponential factor is equal to 1, as stated above. (For a real number a we



TFY4215/FY1006 — Lecturenotes 1 26

have in general that | exp(ia)|2 = exp(−ia) exp(ia) = 1.) Thus the phase factor is of no
importance for the probability density, which becomes time independent:

|Ψ1(r, t)|2 = |C1|2e−2r/a0 .

This is of course satisfactory when we are trying to describe a stationary state.

Inspired by this we shall from now on call all
solutions of the Schrödinger equation on the
form

Ψ(r, t) = ψ(r)e−iEt/h̄

stationary solutions.

(T1.30)

What does it mean to state that |Ψ1|2 is the probability density of the position of the
electron? The answer is, in analogy with the definition of for example mass density, that the
probability density multiplied with a volume element d3r,

|Ψ1(r, t)|2d3r,

gives the probability of finding the electron within this volume element. The probability of
finding the electron somewhere is of course equal to 1. Therefore we must require that our
wave function satisfies the following normalization condition

∫
|Ψ(r, t)|2d3r = 1 (normalization condition), (T1.31)

where the integral is over the whole space. It can be shown that this condition is satisfied
with C1 = (πa3

0)−1/2.
To understand this a little better, let us imagine that we prepare a large number of

hydrogen atoms in the state Ψ1 (the ground state), and for each of them measure the position
of the electron. In analogy with the double-slit experiment, we then cannot predict the
outcome of a single measurement. However, the distribution of the measured positions will
for a large number of measurements agree well with the theoretical probability distribution

|Ψ1(r, t)|2 = |C1|2e−2r/a0 .

The figures shown below illustrate simulated results of three such series of measurements,
with 10, 100 og 1000 “measured” positions. These results were obtained using a Matlab
program involving a random number generator. The program is available on the home
page. By running this program you will get a better impression of the 3D character of the
distribution. (The program generates the points successively, while the distribution is made
to rotate around the z-axis.) The measured positions are seen to be most densely spaced
near the origin (that is, near the proton), which indeed is where the probability density |Ψ1|2
is largest.
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Both Schrödinger and Einstein disagreed strongly with Born’s proposal. However, Born’s
strange probability interpretation of the wave function turned out to be correct. With this
interpretation we can calculate e.g. the expectation value of r,

〈 r 〉 ≡
∫
r|Ψ1|2d3r = .. =

3

2
a0. (T1.32)

It is also easy to find the expectation value of 1/r, which is

〈 1/r 〉 ≡
∫ 1

r
|Ψ1|2d3r =

1

a0

. (T1.33)

This means that the average of the potential energy of the electron in the ground state is

〈V 〉 = − e2

4πε0
〈 1/r 〉 = .. = 2E1 = −27.2 eV. (T1.34)

[Show this.]
If we are asked how big an isolated hydrogen atom is, we now realize that it is difficult

to give a definite answer, because there is for all finite distances r a non-zero probability
density |Ψ1|2, even if this density decreases exponentially. Instead of giving a definite answer,
we must therefore limit ourselves to inform about quantities like the expectation values
〈 r 〉 = 3a0/2 and 〈 1/r 〉−1 = a0. Based on these results, it is reasonable to state that the
Bohr Radius a0 = 0.529× 10−10m is at least a measure of the size of the hydrogen atom
(in its ground state).

For the excited states (for n = 2, 3, 4, ..) it turns out that the size is larger; one finds
, e.g., that 〈 1/r 〉−1 = n2a0. So, the ground state has the lowest energy and the smallest
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extension. We now have an answer to the question why the atom does not shrink to the size of
the proton: For the hydrogen atom, there does not exist any solution with energy lower than
E1 = −13.6 eV, and with a ”size” smaller than than that found above, to Schrödinger’s
time-independent equation (T1.27).

Some comments

(i) Based on our experience with the motion of macroscopic objects, it is natural to think
that it must be possible to describe the motion of the elctron around the proton in terms
of a classical orbit, r = r(t), Which is what Bohr attempted to do. However, quantum
mechanics tells us that this is in fact impossible. For phenomena on the scale of molecules,
atoms and sub-atomic particles, classical mechanics simply is not valid. We do not have a
classical orbit, telling us where the particle is at a given time. All we have is the information
contained in the wave function for the state in question, which contains information about
the probability density for the position, among other things. 14 The position can in principle
be measured, and since the absolute square of the wave function gives the probability density,
we realize that quantum mechanics is not able to predict the result of a single measurement
of the position. The theory therefore has what we may call a statistical character. What
the theory can predict, is the distribution of the results of a large number of measurements.

(ii) The name ”wave function” can lead us to believe that Ψ describes a physical wave,
but that is not the case. As mentioned on page 19 the “wave” Ψ is an abstract object,
which must not be considered as a part of the physical system. This abstract wave exists
only in our theoretical description of the physical system. As a reflection of this fact, the
phase of the complex wave function can not be related to any measurable quantity; it is not
measurable, in contrast to the phase of a surface wave in water, for example.

(iii) To emphasize the latter point, let us calculate the phase velocity of a de Broglie
wave propagating in the x direction,

Ψ(x, t) = ei(kx−ωt) = ei(px−Et)/h̄,

where E = p2/2m+ V, with V =constant. From wave theory we know that the phase
velocity of this wave is vf = ω/k. Assuming that the potential is V = 0, we then get a
phase velocity

vf =
ω

k
=
E

p
=

p

2m
= 1

2
v,

where v = p/m is the classical velocity of a particle with mass m and momentum p. If we
suppose that V 6= 0, the resultat becomes even more mystical:

vf =
E

p
=
p2/2m+ V

p
= 1

2
v + V/p.

The moral is that the phase velocity, and more generally the phase of any quantum-mechanical
wave function, does not correspond to any measurable quantity, and simply has no physical
meaning.

(iv) The plane de Broglie wave is defined for all x and thus has infinite extension. There-
fore, it is not normalizabble (to 1); the integral

∫∞
−∞ |si(x, t)|2dx does not exist. It is not

14In chapter 2 we shall see that the wave function contains information about many thing, not only the
probability density for the position. We shall also learn that it is impossible to get more information than
that contained in the wave function.



TFY4215/FY1006 — Lecturenotes 1 30

square integrable, as we say. However, this can be repaired by constructing a wave group.
Since the time-dependent Schrödinger equation is both linear and homogeneous, the su-
perposition principle:is valid:

A sum of two solutions of
the Schrödinger equation is
also a solution.

(
superposition

prinsiple

)
. (T1.35)

This holds also if the sum is repaleced by an integral:

Ψ(x, t) =
∫
φ(k)ei(kx−ωt)dk, (k = p/h̄, ω = h̄k2/2m). (T1.36)

Here, φ(k) is a smooth distribution of wave numbers around a central value k0. (According
to de Broglie, these wave numbers correspond to momenta smoothly distributed around a
central value p0 = h̄k0.) From wave theory we then remember that the group velocity of this
wave group Ψ(x, t) is

vg =
dω

dk

∣∣∣∣∣
k0

=
h̄k0

m
=
p0

m
≡ v0. (T1.37)

This way we can construct a wave group that is normalizable, so that∫ ∞
−∞
|Ψ(x, t)|2dx = 1.

(For simplicity we are here working in one dimension.) Thus the wave group is moving with
precisely the velocity (v0 = p0/m) wich we should require for this wave group.

(v) Let us return to the ground state of the hydrogen atom. Even if this state is stationary,
with a probability distribution which is time independent (”does not move”), it is important
to relize that the electron is not at rest. This is because the kinetic energy is far from
being equal to zero. This is understood as follows: We know that that the total energy is
well defined (sharp), E1 = −13.6 eV, while the expectation value of the potential energy
is 〈V 〉 = −27.2 eV. Since 〈K + V 〉 = 〈E 〉 = E1, the expectation value of the kinetic
energy is

〈K 〉 = E1 − 〈V 〉 = 13.6 eV.

A kinetic energy of this size in fact corresponds to a velocity of the order of αc = c/137.
[Show this.]

Some control questions

1. Which physical observable corresponds to the operator p̂x = h̄
i
∂
∂x

?

2. Which operator K̂ corresponds to the kinetic energy K = 1
2
mv2 = p2/2m ?

3. Show that the de Broglie wave Ψ3 = exp[i(px− p2t/2m)/h̄] is an eigenfunction of the
momentum operators p̂x, p̂y and p̂z and of the kinetic-energy operator K̂, and determine
the respective eigenvalues.

4. Same for Ψ4 = exp[i(−px− p2t/2m)/h̄].
5. Which physical momenta do the two de Broglie waves above correspond to?
6. Show that cos kx is not an eigenfunction of p̂x.
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7. Vis at Ψ3 oppfyller den tidsavhengige Schrödingerligningen (T1.24) for en fri partikkel.
8. Show that the real part of Ψ3 does not satisfy (T1.24).
9. According to the superposition prinsiple (T1.35), the wave function Ψ9 = Ψ3 + Ψ4

is a solution of (T1.24), and therefore is an acceptable wave function for a free particle. Is
Ψ9 an eigenfunction of the operator K̂ ? Is Ψ9 an eigenfunction of p̂x ? Does Ψ9 describe a
physical state with well-defined momentum?

10. At thermal equilibrium, the atoms in a one-atomic gas will (according to the so-
called equipartition principle) have an average energy of 1

2
kBT per degree of freedom, that

is, 3
2
kBT per atom. When neutrons are slowed down in a so-called moderator in a nuclear

reactor, they end up as ”thermal” neutrons, with an average kinetic energy 3
2
kBT . Suppose

that T = 300 K and find the average kinetic energy in electron volts (eV). Calculate the de
Broglie wave length of the neutron corresponding to this kinetic energy K. Do you think
that the wave nature of these neutrons would be revealed by scattering them on a crystal?
[Answer: λ = 1.46 Å.]

11. When an atom is scattered by the atoms in a crystal, the scattering involves the
Coulomb force between the electron and the atomic charges (electrons and nuclei). We
then say that the electron experiences electromagnetic interactions. What kinds of
interactions do you know about? Can you figure out what kind(s) of interaction are acting
when neutrons are scattered on the crystal? [Remember that the neutrons are electrically
neutral.]

12. Show that the function ψ = Ceikx is an eigenfunction of the momentum operator
p̂ (see (T1.22)), and determine the eigenvalue.

13. Write down (and memorize) den time-dependent Schrödinger equation and the time-
independent Schrödinger equation for a particle with mass m moving in a three-dimensional
potential V (r).

14. What is the form of these equations when the potential is one-dimensional, V = V (x)?
[Hint: The classical expression for the energy then is E = p2

x/2m+ V (x).]

Physical constants15

Light velocity in vacuum c 2.997 924 58·108 m s−1

Planck’s constant h 6.626 068 96(33)·10−34 J s
=4.135 667 333·10−15 eVs

Planck’s constant /(2π) (“h-strek”) h̄ 1.054 571 628(53)·10−34 J s
=6.582 118 99(16)·10−16 eVs

Proton charge e 1.602 176 487(40)·10−19 C

Permittivity of vacuum ε0 = 1/(µ0c
2) 8.854 187 817...·10−12 F m−1

Permeability of vacuum µ0 4π · 10−7 N A−2 (eksakt)

Electron mass me 0.510 998 910(13) MeV/c2

=9.109 382 15(45)·10−31 kg

15Uncertainties in the tabulated values are given in the following way: 1.2345(13) means 1.2345±0.0013.
1 eV=1.602 176 487(40)·10−19 J. Tabulated values from 2010.
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Proton mass mp 938.272 013(23) MeV/c2

=1.672 621 637(83)·10−27 kg
Neutron mass mn 939.565 346(23) MeV/c2

Fine-structure constant α = e2/(4πε0h̄c) 1/137.035 999 679(94)
Classical electron radius re = e2/(4πε0mec

2) 2.817 940 2894(58)·10−15 m
Electron Compton wavelength λe = h/(mec) 2.426 310 2389(16)·10−12 m
Electron Compton wavelength /(2π) −λe = h̄/(mec) = re/α 3.861 592 6459(53)·10−13 m
Bohr radius a0 = 4πε0h̄

2/(mee
2) 0.529 177 208 59(36)·10−10 m

= re/α
2

Rydberg energy 1
2
α2mec

2 = h̄2/(2mea
2
0) 13.605 691 93(34) eV

Gravitational constant GN 6.674 28(67)·10−11 m3 kg−1 s−2

Avogadro’s number NA 6.022 141 79(30)·1023 mol−1

Boltzmann’s constant kB 1.380 6504(24)·10−23 J K−1

=8.617 343(15)·10−5 eV K−1

Stefan–Boltzmann’s constant σ = 2π5k4
B/(15h3c2) 5.670 400(40)·10−8 W m−2 K−4

The greek alphabet

In quantum mechanics (and in physical literature in general) we need many more symbols
than there are letters in the alphabet. Therefore it is customary to include letters from e.g.
the greek alphabet. Below you will find upper-case and lower-case letters and waht they are
called and pronounced in Norwegian.
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stor bokstav liten bokstav navn uttale

A α alfa alfa

B β beta beta

Γ γ gamma gamma

∆ δ delta delta

E ε epsilon epsilon

Z ζ zeta tseta

H η eta eta

Θ θ (el. ϑ) theta teta

I ι iota iota

K κ kappa kappa

Λ λ lambda lambda

M µ my my

N ν ny ny

Ξ ξ xi ksi

O o omikron omikron

Π π pi pi

P ρ rho ro

Σ σ sigma sigma

T τ tau tau

Υ υ ypsilon ypsilon

Φ φ (el. ϕ) phi fi

X χ khi kji

Ψ ψ psi psi

Ω ω omega omega


