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Lecture notes 10

10 More general formulation of quan-
tum mechanics

In this course we have so far been using the position representation of quan-
tum mechanics, and we have briefly touched upon the momentum representation.
In these notes, we shall see that these formulations are special cases of a more
general formulation.

This new formulation is important firstly because it offers a number of technical
advantages, simplifying a number of calculations (once we get used to the new
technique). The main advantage, however, is that the new formulation allows
us to treat systems which cannot be described by wave mechanics, that is, with
wave functions in x- or p-space. A central example is the description of spin
degrees of freedom.

[You might want to supplement these notes with Hemmer’s chapter 6, chapter
3 in Griffiths, and chapter 5 in B&J. Another reference is J.J. Sakurai, Modern
Quantum Mechanics, chapter 1.]

10.1 Vectors in Hilbert space

10.1.a Central results in the position representation

Let us briefly review some central results in the theory presented so far:
The state of a particle at a given point in time can be described by a spatial wave

function ψ(x), if we consider a one-dimensional case. The value of ψ at the point x gives
the probability amplitude of finding the particle in this position, in the sense that |ψ(x)|2
gives the probability density. Thus, when we know the complete function ψ(x), we know the
amplitudes of finding the particle in all possible positions.

We are free to expand the wave function in terms of an arbitrary complete set of basis
states. There are many such bases; we remember that for each observable there is a hermitian
operator with a complete set of eigenfunctions. Examples are p̂x, Ĥ and x̂, with eigenvalue
equations and eigenfunctions as follows:

p̂xψp(x) = pψp(x) ; ψp(x) = (2πh̄)−1/2eipx/h̄;

Ĥψn(x) = Enψn(x) ; ψn(x) depends on the potential V (x); (T10.1)
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x̂ψx′(x) = x′ψx′(x) ; ψx′(x) = δ(x− x′).

Here, we are assuming a discrete and non-degenerate energy spectrum {En}, so that we can
use the orthonormality relation

〈ψk, ψn 〉 ≡
∫
ψ∗k (x)ψn(x)dx = δkn. (T10.2)

All these sets of states are complete, in the sense that an arbitrary state ψ(x) may be
expanded in any of these sets. The expansion in terms of energy eigenfunctions then is a
sum, while the expansions in momentum and position eigenfunctions become integrals, since
the spectra {x′} and {p} are continuous:

ψ(x) =
∫
dp φ(p)ψp(x);

ψ(x) =
∑
n

cnψn(x); (T10.3)

ψ(x) =
∫
dx′ c(x′)ψx′(x).

The expansion coefficients φ(p), cn and c(x′) in these formulae characterize the state per-
fectly, like ψ(x) itself, in the same way as the components of a vector in a given basis gives
a perfect representation of the vector.

The expansion coefficients in (T10.3) are the projections of ψ onto the respective “basis
vectors” ψp, ψn and ψx′(x) = δ(x− x′) :

φ(p) = (ψp, ψ) =
∫
ψ∗p (x)ψ(x)dx;

cn = (ψn, ψ) =
∫
ψ∗n (x)ψ(x)dx; (T10.4)

c(x′) = (ψx′ , ψ) =
∫
δ(x′ − x)ψ(x)dx = ψ(x′).

Let us repeat the proof for the formula for cn, by projecting ψ(x) =
∑
cnψn(x) on ψk.

Interchanging the order of integration and summation, we find that

〈ψk, ψ 〉 =
∫
ψ∗k (x)

∑
n

cnψn(x) =
∑
n

cn

∫
ψ∗k (x)ψn(x)dx =

∑
n

cnδkn = ck, q.e.d. (T10.5)

A small exercise: Find the momentum wave function φ(p) by projecting ψ
on ψp. Hint: Change the order of the integrations and use the delta-function
“normalization” ∫

ψ∗p′(x)ψp(x)dx = δ(p′ − p).

In a similar manner you can derive the formula for c(x′) using the relation∫
δ(x− x′′)δ(x− x′)dx = δ(x′ − x′′).

But it is even simpler to use the identity

ψ(x) =
∫
ψ(x′)δ(x− x′)dx′.
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We must also remember the physical interpretation of the expansion coefficients: ψ(x′) is (as
already mentioned) the probability amplitude of finding the particle at the position x′ (in the
sense that |ψ(x′)|2 is the probability density in position space). In the same manner, |φ(p)|2
is the probability density in momentum space, and |cn|2 is the probability of measuring the
energy En (and leaving the particle in the state ψn).

10.1.b State vectors in Hilbert space. Dirac notation

The most central aspect of the new formulation is that:

With each wave function ψ(x) we may associate an abstract vector which
is called a state vector. For such vectors we shall use the symbol |. . .〉,
which was invented by Dirac.

(T10.6)

For this so-called ket vector we may choose a suitable label to indicate which state we have
in mind. As an example, we may denote the vector corresponding to the wave function ψ(x)
by |ψ〉. The vector corresponding to the energy eigenfunction ψn(x) may be denoted by |ψn〉
(or |n〉 or |En〉). The vector corresponding to the position eigenfunction ψx′(x) = δ(x− x′)
may suitably be called |x′〉. The vector corresponding to the momentum eigenfunction
ψp(x) = (2πh̄)−1/2eipx/h̄ might be labeled |p〉 or |ψp〉, and so on. Thus (no matter which
label we choose to use) we have a one-to-one correspondence between wave function and
state vector:

ψ(x) ⇐⇒ |ψ〉,
ψn(x) ⇐⇒ |ψn〉 = |n〉 = |En〉,

ψx′(x) = δ(x− x′) ⇐⇒ |x′〉, (T10.7)

ψp(x) ⇐⇒ |p〉 = |ψp〉,

and so on.
Here, we should not be confused by the fact that also wave functions are vectors (cf

Lecture notes 2, or Griffiths); The ket vector |ψ〉 and the wave function ψ(x) are different
objects; they belong to two different vector spaces, with a one-to-one correspondence between
the vectors in the two spaces. The space spanned by the ket vectors will from now on be
denoted the Hilbert space H, (even if also the wave functions ψ(x) are vectors in a Hilbert
space, mathematically speaking). 1

An important property of Hilbert space (shared with all linear, complex vector spaces)
is that an arbitrary linear combination of two vectors is also a vector in this space:

c1|ψ1〉+ c2|ψ2〉 = |ψ3〉. (T10.8)

1As you may recall from the discussion of the momentum eigenfunctions ψp(x), these are not quadratically
integrable. They therefore do not belong to the mathematical Hilbert space L2(−∞,∞) of quadratically
integrable functions, and neither do the position eigenfunctions ψx′(x) = δ(x − x′). Correspondingly, the
ket vectors |ψp 〉 and |x′ 〉 do not really belong to the Hilbert space H. However, these vectors function
perfectly well as basis vectors for expansions of vectors in Hilbert space. Thus the sets {|ψp 〉} and {|x′ 〉} are
complete, together with the set {|ψn 〉}. In quantum mechanics one therefore works with a kind of enlarged
“Hilbert” space, where the vectors |x′ 〉 and |ψp 〉 ≡ |p〉 may largely be treated in the same way as the proper
Hilbert-space vectors.
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In particular c|ψ〉 gives a new vector |ψ1〉:2

c|ψ〉 = |ψ〉c = |ψ1〉. (T10.9)

Here, |ψ〉 corresponds to the wave function ψ(x), and |ψ1〉 corresponds to cψ(x) = ψ(x)c.
As you will remember, ψ(x) and cψ(x) describe the same physical state. The same then
holds for the ket-vectors |ψ〉 and |ψ1〉 = c|ψ〉.

10.1.c The dual Hilbert space. Scalar product

To get a new formulation that is equivalent with the old one, we must postulate the existence
of a salar product (inner product) between ket vectors.

Before we define this product, it may be instructive to review how the scalar product is
defined for ordinary complex vectors A and B. In physics literature this product is usually
defined as

〈A,B 〉 = A∗·B ≡
∑
i

A∗i Bi. (T10.10)

From this definition it follows that the (usually) complex scalar product satisfies the relation

〈A,B 〉 = 〈B,A 〉∗ . (T10.11)

Furthermore it is easy to see that, with c a complex number, the scalar product has the
properties

〈A, cB 〉 = c 〈A,B 〉 and 〈 cA,B 〉 = c∗ 〈A,B 〉 . (T10.12)

We then say that the scalar product 〈V1,V2 〉 is linear with respect to vector no 2 (V2)
and anti-linear with respect to vector no 1 (V1). Notice that the scalar product between
functions has exactly the same properties:

〈 f, g 〉 =
∫
f∗ g dτ = 〈 g, f 〉∗ ; 〈 f, cg 〉 = c 〈 f, g 〉 ; 〈 cf, g 〉 = c∗ 〈 f, g 〉 . (T10.13)

To obtain a convenient notation for the scalar product (inner product) 〈 |ψ1〉 , |ψ2〉 〉
between two ket-vektorer in Hilbert space, Dirac introduced the so-called dual Hilbert space
H∗. We create this space by associating with every ket vector |ψ〉 in H a so-called dual
vector 〈ψ | in H∗:

〈ψ | dual of←→ |ψ〉. (T10.14)

Employing these new vectors 〈. . .|, which Dirac called bra vectors, we can formulate
rules of calculation and establish the Dirac notation, which are in fact easier to use than the
wave-function formalism (and which may also be applied to problems for which there does
not exist any wave functions, like e.g. for spin).

The main reason for introducing the bra vector is that it allows us to write the scalar
product between |ψ1〉 and |ψ2〉 as a simple product of the bra vector 〈ψ1 | and the ket vector
|ψ2〉:

〈 |ψ1〉 , |ψ2〉 〉 = 〈ψ1 |·|ψ2〉 ≡ 〈ψ1 |ψ2〉. (T10.15)

We can now understand why Dirac introduced the names bra and ket: The scalar product

〈ψ1 |·|ψ2〉 ≡ 〈ψ1 |ψ2〉
2Some authors also use the notation c|ψ 〉 = |ψ 〉c = |cψ 〉.
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has the form 〈bra|ket〉, derived from the word 〈”bracket”〉. Notice that 〈ψ1 | plays a
role similar to A∗ in the dot product 〈A,B 〉 = A∗·B, and to ψ∗1 in the scalar product
〈ψ1, ψ2 〉 =

∫
ψ∗1 ψ2dτ . In (T10.15), we have an additional rule: In this inner product, the

bra vector is always standing on the left and the ket vector is standing on the right.
The physical interpretation of 〈ψ1 |ψ2〉 = 〈 |ψ1〉 , |ψ2〉 〉 — the projection of |ψ2〉

on |ψ1〉 — is exactly the same as for the corresponding wave functions: The projection
is the probability amplitude that a measurement “finds” the system in the physical state
corresponding to |ψ1〉 (and to ψ1) when the system is in the state corresponding to |ψ2〉
(and to ψ2) before the measurement. Thus

〈ψ1 |·|ψ2〉 ≡ 〈ψ1 |ψ2〉 = 〈ψ1, ψ2 〉 ≡
∫
ψ∗1 ψ2dτ. (T10.16)

From the relation 〈ψ1, ψ2 〉 = 〈ψ2, ψ1 〉∗ it then follows that

〈ψ2 |·|ψ1〉 = (〈ψ1 |·|ψ2〉)∗ = complex number,

or
〈ψ1 |ψ2〉 = 〈ψ2 |ψ1〉∗. (T10.17)

We then see that

〈ψ1 |·c|ψ2〉 = 〈ψ1, cψ2 〉 = c 〈ψ1, ψ2 〉 = c〈ψ1 |·|ψ2〉. (T10.18)

Thus the scalar product is linear in the ket vector (vector no 2). With |ψ1〉 = c|φ〉 we see
in the same manner that

〈ψ1 |·|ψ2〉 = 〈ψ2 |ψ1〉∗ = (c〈ψ2 |φ〉)∗ = c∗〈φ|·|ψ2〉.

Thus the dual of |ψ1〉 = c|φ〉 is c∗〈φ|:

c∗〈φ| dual of←→ c|φ〉, (T10.19)

in analogy with (ca)∗ = c∗a∗. We shall use this relation frequently. Notice that this means
that the scalar product is anti-linear with respect to vector no 1, just as 〈 f, g 〉 =

∫
f∗ g dτ .

The relation between |ψ〉 and ψ(x)

While the wave function is now a well-known and hopefully dear friend, you are probably
having difficulties in imagining what kind of object the abstract state vector |ψ〉 is. However,
as you get more acquainted with the new formalism, you will learn to live with the abstract-
ness, and you will probably end up appreciating the convenience of the new formalism, once
you learn how to use it. We shall now attempt to present the central parts of these methods,
not necessarily in the most systematic way.

Two important aspects have already been mentioned: The dual correspondence (T10.14)
and (T10.19), together with the fact that the scalar product 〈ψ1 |ψ2〉 is the same as between
the corresponding wave functions. (See (T10.16)). Thus the physical interpretation of the
new scalar product is the same as for the old one: For example, the scalar product 〈ψn |ψ〉
is the probability amplitude of finding the particle in the state described by the vector |ψn〉
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(i.e., with the energy En) if it was in a state desrcibed by the vector |ψ〉 (corresponding to the
wave function ψ(x)) before the measurement. In the same manner 〈p|ψ〉 is the amplitude
of finding the particle described by the vector |p〉 (i.e., with momentum p).

Another example: We remember that the vector |x′〉 describes a state where the particle
has the position x′ (corresponding to the wave function ψx′(x) = δ(x− x′)). The scalar
product 〈x′ |ψ〉 therefore is the amplitude of finding the particle at x′ when it is in the state
|ψ〉. But this amplitude is precisely what the wave function ψ(x′) is. Thus the relation
between the wave function ψ(x) and the vector |ψ〉 is

〈x|ψ〉 = ψ(x). (T10.20)

Notice also that
〈ψ |x〉 = 〈x|ψ〉∗ = ψ∗(x). (T10.21)

10.1.d Completeness

Thus the wave function ψ(x) = 〈x|ψ〉 is the ”component of the Hilbert vector |ψ〉 in the
|x〉-direction”, or the projection of the vector |ψ〉 on the basis vector |x〉. In the same
manner the scalar product 〈ψn |ψ〉 is the projection of |ψ〉 on another basis vector, |ψn〉. As
the term “basis” indicates, these sets are complete, as are the corresponding sets of wave
functions (cf (T10.1)). This means that an arbitrary vector |ψ〉 in Hilbert space may be
expanded in terms of these basis sets, in analogy with the expansions (T10.3):

|ψ〉 =
∫
dp φ(p)|p〉,

|ψ〉 =
∑
n

cn|ψn〉, (T10.22)

|ψ〉 =
∫
dx′ c(x′)|x′〉.

Here we must of course expect that the coefficients are the same as in (T10.4),

cn = 〈ψn, ψ 〉 = 〈ψn |ψ〉, etc,

but let us check it, to get a little experience with the new formalism: By projecting the
second of equations (T10.22) on |ψk 〉 (that is, by multiplying from the elft by 〈ψk | ), we find

〈ψk |ψ〉 =
∑
n

cn〈ψk |ψn〉 =
∑
n

cnδkn = ck, q.e.d..

Here we have used (T10.16), which implies that the set |ψk 〉 is orthonormal, just like the set
ψk(x):

〈ψk |ψn〉 = 〈ψk, ψn 〉 = δkn. (T10.23)

Inserting into (T10.22) now gives

|ψ〉 =
∑
n

〈ψn |ψ〉 |ψn〉. (T10.24)
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The corresponding expansions in terms of momentum and position vectors are

|ψ〉 =
∫
dp 〈p|ψ〉 |p〉,

|ψ〉 =
∫
dx′ 〈x′ |ψ〉 |x′〉. (T10.25)

This can be shown by projecting (T10.22) on |x′′〉 and |ψp′ 〉, respectively. Both these are
“continuum sets”, with δ-function normalization, so that instead of (T10.23) we have 3

〈p′ |p〉 = 〈 p′, p 〉 = δ(p− p′),

〈x′′ |x′〉 = 〈ψx′′ , ψx′ 〉 = δ(x′′ − x′). (T10.26)

Hence
〈x′′ |ψ〉 =

∫
dx′ c(x′)〈x′′ |x′〉 =

∫
dx′ c(x′)δ(x′′ − x′) = c(x′′),

so that
|ψ〉 =

∫
dx′ c(x′)|x′〉 =

∫
dx′ 〈x′ |ψ〉 |x′〉 =

∫
dx 〈x|ψ〉 |x〉, q.e.d..

In the same manner,

〈p′ |ψ〉 =
∫
dp φ(p)〈p′ |p〉 =

∫
dp φ(p)δ(p− p′) = φ(p′), q.e.d..

Notice that
〈p|ψ〉 = φ(p) (T10.27)

is the amplitude of finding the momentum p, that is, the momentum wave function.
Notice also that the formulae (T10.24) and (T10.25) are analogous to expansions of an

ordinary vector in alternative basis sets êi and ê′i,

A =
∑

Aiêi =
∑

A′iê
′
i ;

the components (Ai) depend on our choice of basis, while the vector A itself is basis-
independent; it is an absolute geometric object. The same can be stated about the Hilbert
vector |ψ〉.

The completeness relation

Equations (T10.24) and (T10.25) rely on the fact that the three basis sets are complete. A
slight re-writing of (T10.24) gives 4

|ψ〉 =
∑
n

〈ψn |ψ〉 |ψn〉

=
∑
n

|ψn〉〈ψn |·|ψ〉

=

(∑
n

|ψn〉〈ψn |
)
·|ψ〉. (T10.28)

3Vectors with δ-function normalization (and the corresponding wave functions) strictly speaking do not
belong to the respective Hilbert spaces, as already mentioned. In quantum mechanics we prefer to include
these vectors into our formalism. This means that we are working with an “extended” Hilbert space, often
simply called the Hilbert space.

4Notice that the scalar product 〈ψn |ψ 〉 is a complex number, which may be moved wherever it suits us.
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Since this holds for an arbitrary vector |ψ〉, it follows that

∑
n

|ψn〉〈ψn | = 11. (the completeness relation) (T10.29)

This is the completeness relation in Dirac notation (for a discrete vector set). As we shall
see below, both sides of this equation are operators. The quantity on the right-hand side
is the unit operator; 11|ψ〉 = |ψ〉.

In a similar manner we find for the two continuum sets:

|ψ〉 =
∫
dx 〈x|ψ〉 |x〉 =

(∫
dx |x〉〈x|

)
·|ψ〉, etc.

Thus the completeness relations for these sets are∫
dx |x〉〈x| = 11,∫
dp |p〉〈p| = 11. (completeness) (T10.30)

In what follows we shall see that these relations are easier to use than the corresponding
relations for the wave functions (see e.g. B&J p 205):∑

n

ψn(x)ψ∗n (x′) = δ(x− x′),∫
dp ψp(x)ψ∗p (x′) = δ(x− x′), etc. (T10.31)

As an example we can re-write the square ‖ |ψ〉 ‖2 ≡ 〈ψ |ψ〉 of the norm of |ψ〉 in several
ways:

〈ψ |ψ〉 = 〈ψ |11|ψ〉 = 〈ψ |
(∫

dx |x〉〈x|
)
|ψ〉

=
∫
dx 〈ψ |x〉〈x|ψ〉 =

∫
dx ψ∗(x)ψ(x) = 〈ψ, ψ 〉 ,

〈ψ |ψ〉 = 〈ψ |
(∑

n

|ψn〉〈ψn |
)
|ψ〉

=
∑
n

〈ψ |ψn〉〈ψn |ψ〉 =
∑
n

|〈ψn |ψ〉|2 ≡
∑
n

|cn|2, (T10.32)

〈ψ |ψ〉 = 〈ψ |
(∫

dp |p〉〈p|
)
|ψ〉

=
∫
dp |〈p|ψ〉|2 ≡

∫
dp |φ(p)|2.

These relations are generalized Parseval relations. Notice that the scalar product 〈ψ |ψ〉 is
always a real non-negative number, so that we can define the norm of |ψ〉 as

‖ |ψ〉 ‖ = 〈ψ |ψ〉1/2 ≥ 0. (T10.33)

The technique applied above, of inserting the unit operators (T10.29) or (T10.31) (or a
similar expression for another complete set) where it is suitable, is a trick that we shall use



TFY4250/FY2045 Lecture notes 10 - More general formulation of quantum mechanics 9

frequently in what follows. Let us as an example use this trick to show the equivalence of
(T10.29) and (T10.31): From the normalization condition (T10.26) we have:

δ(x− x′) = 〈x|x′〉 = 〈x|11 |x′〉

= 〈x|
∑
n

|ψn〉〈ψn |x′〉 (T10.34)

=
∑
n

〈x|ψn〉〈x′ |ψn〉∗ =
∑
n

ψn(x)ψ∗n (x′), q.e.d.

10.2 Operators, eigenvectors, expectation values, etc

10.2.a General definition of operators

An operator applied to a function has the property

operator · function =new function. (T10.35)

The operators appearing in the new formulation have the same kind of property: When
an operator Â acts on a Hilbert vector |b〉, the result is a new vector in Hilbert space,
|c〉 = Â|b〉. In other words: Operators in Hilbert space map the space into itself. Notice
that the operator is standing to the left of a ket vector.

Example: Projection operator

The expression Pn ≡ |ψn〉〈ψn | is an operator. Applied to an arbitrary vector |ψ〉 it gives

Pn|ψ〉 ≡ (|ψn〉〈ψn |) |ψ〉 = 〈ψn |ψ〉 |ψn〉 ≡ cn|ψn〉. (T10.36)

Thus the operator Pn ≡ |ψn〉〈ψn | projects out the part of the vector |ψ〉 which points in
the ”|ψn〉 direction”. It is therefore called a projection operator. Notice that∑

n

Pn =
∑
n

|ψn〉〈ψn | = 11. (completeness relation) (T10.37)

Thus, as already mentioned, the expression on the left in the compleness relation is a sum of
operators, adding up to the unit operator. Applying the trick of inserting this unit operator
wherever it suits us, we must therefore always let the unit operator act from the left on a ket
vector. It may also stand to the right of a bra vector. Some times we shall apply the unit
operator to the right of an isolated 〈bra vector|; the resulting expression 〈bra vector| · 11
may then be applied from the left on a |ket〉. (See section 10.3.b below.)

10.2.b Operators and eigenvectors

As you can see e.g. in section 6.4 in Hemmer’ book, we may use the same postulates of
quantum mechanics in the new formulation as in the old one, apart from the notation: Thus
to each physical observable (e.g. x, px, E, etc) there corresponds a Hermitian operator. The
problem with these Hilbert-space operators is that they are as abstract as the vectors — but
again we shall see that we can live with the abstractness. For example, the only thing we
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need to know about the operator p̂x is that it is defineed in such a way that it satisfies the
eigenvalue equation

p̂x|p〉 = p|p〉. (T10.38)

Similarly, the operator x̂ is defined by

x̂|x′〉 = x′|x′〉. (T10.39)

Thus the position vector |x′〉 is an eigenvector of the operator x̂ with the eigenvalue x′.
We shall see that (T10.38) and (T10.39) are sufficient to determine the action of the

operators x̂ and p̂x on an arbitrary vector |ψ〉. Using the completeness relation for the set
{|p〉} of eigenvectors of p̂x we have

|ψ〉 =
∫
dp |p〉〈p|ψ〉. (T10.40)

Using (T10.38) we then find that the operator acts as follows:

p̂x|ψ〉 = p̂x

∫
dp |p〉〈p|ψ〉 =

∫
dp p̂x|p〉〈p|ψ〉

=
(∫

dp p|p〉〈p|
)
·|ψ〉. (T10.41)

Since this holds for all |ψ〉, we have a well-defined expression for the operator p̂x:

p̂x =
∫
dp |p〉p〈p|. (T10.42)

Here, the number p can be placed in any position in the integrand. This expression is the
so-called spectral representation of the operator p̂x; notice that the integral over p runs
over the complete spectrum of the operator. Using the same method we find

x̂ =
∫
dx′ |x′〉x′〈x′ |. (T10.43)

A similar procedure can obviously be carried through for all Hermitian operators (with com-
plete sets of eigenvectors). An operator F̂ with a continuous spectrum {f} and eigenvectors
|f 〉 can be expressed as

F̂ =
∫
df |f 〉f〈f |. (T10.44)

An operator Â with a discrete eigenvalue spectrum {an} and eigenvectors |an〉 can be written
as

Â =
∑
n

|an〉an〈an |, (T10.45)

and so on.
The same recipe can also be used to obtain an expression for an arbitrary power of a

Hermitian operator. Applying p̂x once more in (T10.41) we find for example that

p̂2
x =

∫
dp |p〉p2〈p|,

and similarly for higher powers of p̂x. This way we can also find an expression for an
operator-valued function F̂ (p̂x). Such operator functions are defined by a Taylor expan-
sion of F in powers of the argument. Thus the operator F̂ (p̂x) can be written as

F̂ (p̂x) =
∫
dp |p〉F (p)〈p|, (T10.46)
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where F (p) is the function F of the variable p. An example is the potential V (x) for which
the abstract potential operator is given by

V̂ (x̂) =
∫
dx′ |x′〉V (x′)〈x′ |. (T10.47)

10.2.c Adjoint

We have been discussing Hermitian operators, but without defining Hermiticity in Dirac
notation. The new definition must of course be equivalent with the old one, that is, we must
require that the operator is self adjoint. The “old” definition of the adjoint of the operator
Â was ∫

(Âψ1)∗ψ2dτ ≡
∫
ψ∗1 Â†ψ2dτ, (T10.48)

which may also be written as∫
ψ∗1 Â†ψ2dτ =

(∫
ψ∗2 Âψ1dτ

)∗
,

or
(ψ1, Â

†ψ2) = (ψ2, Âψ1)∗.
The equivalent definition in Dirac notation is

〈a|Â†|b〉 = 〈b|Â|a〉∗, (def. Â†) (T10.49)

where we have denoted the two arbitrary vectors by |a〉 and |b〉. Denoting the vector Â|a〉
by |c〉, we have from (T10.49):

〈a|Â†|b〉 = 〈b|c〉∗ = 〈c|b〉.

Thus the dual of the vector |c〉 = Â|a〉 is 〈a|Â† :

〈a|Â† dual of←→ Â|a〉. (T10.50)

For a self adjoint (i.e. Hermitian) operator Â = Â† we see that

〈a|Â|b〉 = 〈b|Â|a〉∗. (Â Hermitian) (T10.51)

Later we shall also see that the expectation values of Hermitian operators and their eigen-
values are real, as in the old formalism.

The equivalence between the old definition (T10.48) of the adjoint and the new one,
(T10.49), implies that the rules of calculation for obtaining an adjoint (found in Lecture
notes 2) apply equally well for Hilbert-space operators. Thus

(ÂB̂)† = B̂†Â† ;

(ÂB̂Ĉ)† = Ĉ†B̂†Â† , etc; (T10.52)

(cF̂ )† = c∗F̂ † , (c a complex number).
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We may also include the rule
(Â†)† = Â, (T10.53)

which follows by applying (T10.51) twice:

〈a|(Â†)†|b〉 = 〈b|Â†|a〉∗ = 〈a|Â|b〉.

The bra vector 〈a|, which is dual to the ket vector |a〉, is often called the adjoint of |a〉
(and vice versa):

(|a〉)† = 〈a| , (〈a|)† = |a〉. (T10.54)

We may then obtain the adjoint of an arbitrary expression cantaining constants, operators
and ket and bra vectors using the following substitutions:

c −→ c∗ ; (constant)

Â −→ Â† ; (operator)

| 〉 −→ 〈 | ; (ket → bra)

〈 | −→ | 〉 ; (bra → ket)

(T10.55)

while the order of the terms is reversed. Note, however, that constants and scalar products
like 〈a|b〉 and 〈a|Â|b〉 can be moved around freely, because they are all complex numbers.
Examples:

(i) The adjoint of the operator c〈u|Â|v〉 |φ〉〈ψ | is

|ψ〉〈φ| 〈v |Â†|u〉c∗ = c∗〈v |Â†|u〉 |ψ〉〈φ|.

(ii) The adjoint of the ket vector c|u〉〈v |w〉 is the bra vector

〈w |v〉 〈u|c∗ = c∗〈w |v〉 〈u|.

10.2.d Expectation values

The expectation value of an observable F is in Dirac notation given by

〈F 〉ψ = 〈ψ |F̂ |ψ〉. (expectation value) (T10.56)

Let us check that this definition is equivalent with the old one (cf Postulate C in Lecture
notes 2): We take F̂ = x̂ as an example and use the standard trick:

〈x 〉ψ = 〈ψ |x̂ · 11|ψ〉 = 〈ψ |x̂
∫
dx′ |x′〉〈x′ |ψ〉

=
∫
dx′ 〈ψ |x′〉x′〈x′ |ψ〉 =

∫
dx′ ψ∗(x′)x′ ψ(x′), q.e.d.

(You can derive the same result more directly by using (T10.43)).
Furthermore we have from (T10.27) and (T10.42):

〈 p̂x 〉ψ = 〈ψ |p̂x|ψ〉 =
∫
dp 〈ψ |p〉 p 〈p|ψ〉

=
∫
dp φ∗(p) p φ(p) =

∫
dp |φ(p)|2 p, (T10.57)
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where 〈p|ψ〉 = φ(p) is the amplitude of finding the momentum p (i.e., the momentum wave
function) and |φ(p)|2 is the probability density in momentum space.

More generally, we have for a (Hermitian) operator Â with eigenvalues an and eigenvectors
|an〉 (cf (T10.45)):

〈A 〉ψ = 〈ψ |Â|ψ〉
= 〈ψ |

∑
n

|an〉an〈an |ψ〉

=
∑
n

〈an |ψ〉∗an〈an |ψ〉

=
∑
n

|〈an |ψ〉|2an ≡
∑
n

P (an)an, (T10.58)

where P (an) = |〈an |ψ〉|2 is the probability of measuring an.
Notice that the Hermiticity of Â implies that 〈A 〉ψ is real for all |ψ〉 (cf (T10.51)). In

particular, if we set |ψ〉 = |an〉, equation (T10.58) gives

〈A 〉|an 〉 = an,

showing that all eigenvalues an are real, as we have seen before.

10.3 Equation of state. Position and momentum

representations

10.3.a Equation of state

So far we have not discussed the time dependence of state vectors. A time-dependent wave
function Ψ(x, t) must correspond to a time-dependent Hilbert vector |Ψ(t)〉:

Ψ(x, t) = 〈x|Ψ(t)〉. (T10.59)

We shall postulate that the quantum-mechanical equation of motion for |Ψ(t)〉, or the equa-
tion of state, generally has the same form as the Schrödinger equation,

ih̄
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉, (T10.60)

also for systems that can not be described by ordinary wave functions (cf spin degrees of
freedom). We may call this equation a generalized Schrödinger equation. In this equation,
Ĥ is the Hamiltonian of the system, which determines how |Ψ(t)〉 develops as a function of
time. Supposing that Ĥ is Hermitian, we may say that |Ψ(t)〉 ”rotates” in Hilbert space,
since the norm is then conserved. This follows from (T10.60):

d

dt
〈Ψ(t)|Ψ(t)〉 = (

d

dt
〈Ψ|)·|Ψ〉+ 〈Ψ|· d

dt
|Ψ〉

=
1

−ih̄
〈Ψ|Ĥ†|Ψ〉+ 〈Ψ| 1

ih̄
Ĥ|Ψ〉

=
i

h̄
〈Ψ|(Ĥ† − Ĥ)|Ψ〉 = 0, q.e.d., (T10.61)

since Ĥ† = Ĥ when Ĥ is Hermitian.
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10.3.b Position and momentum representations

For systems which can be described by wave functions, equation (T10.60) must of course
be equivalent to the Schrödinger equation, as is also indicated by the form of the proposed
equation (T10.60). We shall see that the Schrödinger equation and the “old” formulation
of quantum mechanics in position space, which we call the position representation, follows
simply by projecting (T10.60) onto the |x〉 basis. In the same manner, the momentum
representation will follow when we project (T10.60) on the momentum basis |p〉.

We start by establishing some simple formulae, which are very handy tools both here and
in other connections:

〈x′ |x̂ = x′〈x′ | ; (T10.62)

〈x′ |p̂x =
h̄

i

∂

∂x′
〈x′ | ; (T10.63)

〈p|p̂x = p〈p| ; (T10.64)

〈p|x̂ = − h̄
i

∂

∂p
〈p| . (T10.65)

These formulae can be generalized, with the operators x̂ and p̂x replaced by powers of these
operators, and hence also with operator-valued functions which can be expanded in powers:

〈x′ |F̂ (x̂, p̂x) = F̂ (x′,
h̄

i

∂

∂x′
)〈x′ | ; (T10.66)

〈p|F (x̂, p̂x) = F̂ (− h̄
i

∂

∂p
, p)〈p| . (T10.67)

All these expressions become meaningful when they are applied from the left on a chosen
ket vector.

Proof of the relations above:

Equations (T10.62) and (T10.64) follow by taking the adjoint of the eigenvector equations
(T10.39) and (T10.38) (cf the rules (T10.55)). Formula (T10.63) is shown as follows: From
the relation

〈x′ |p〉 = ψp(x
′) = (2πh̄)−1/2 eipx

′/h̄ = 〈p|x′〉∗ (T10.68)

we have the identities

p〈x′ |p〉 =
h̄

i

∂

∂x′
〈x′ |p〉 and x′〈p|x′〉 = − h̄

i

∂

∂p
〈p|x′〉. (T10.69)

Using the standard trick with the completeness relation, we then have

〈x′ |p̂x · 11 = 〈x′ |p̂x
∫
dp |p〉〈p|

= 〈x′ |
∫
dp p|p〉〈p|

=
∫
dp 〈x′ |p〉p〈p|

=
∫
dp
h̄

i

∂

∂x′
〈x′ |p〉〈p|

=
h̄

i

∂

∂x′
〈x′ |

∫
dp |p〉〈p| = h̄

i

∂

∂x′
〈x′ | · 11, q.e.d. (T10.70)
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(Notice that the use of (T10.42) for the operator p̂x would save us from the first steps in this
derivation). Equation (T10.65) is proved in the same manner.

The proof (T10.70) of equation (T10.63) can easily be generalized to arbitrary powers of
p̂x, so that a power p̂nx to the right of 〈x′ | can be replaced by the corresponding power ( h̄

i
∂
∂x′

)n

to the left of 〈x′ |. Similar statements are valid for all four of the relations (T10.62)–(T10.65).
This also holds for sums of powers, that is, for Taylor expansions. This proves (T10.66) and
(T10.67).

It is now a trivial matter to derive the Schrödinger equation from the generalized equation
(T10.60). Projecting the latter on |x′〉 we find from (T10.66):

ih̄
d

dt

∣∣∣∣∣
x′
〈x′ |Ψ(t)〉 = 〈x′ |Ĥ(x̂, p̂x)|Ψ(t)〉 = Ĥ(x′,

h̄

i

∂

∂x′
)〈x′ |Ψ(t)〉,

or

ih̄
∂

∂t
Ψ(x′, t) = Ĥ(x′,

h̄

i

∂

∂x′
)Ψ(x′, t), (T10.71)

which is the Schrödinger equation in the position representation.
It is now not really necessary to show that also the momentum representation follows

from (T10.60), because we know that it follows from (T10.71) (which follows from (T10.60)).
But let us do it anyway, to get some more practice: By projecting (T10.60) on |p〉 we have
from (T10.67)

ih̄
d

dt

∣∣∣∣∣
p

〈p|Ψ(t)〉 = 〈p|Ĥ(x̂, p̂x)|Ψ(t)〉 = Ĥ(− h̄
i

∂

∂p
, p)〈p|Ψ(t)〉.

Here, 〈p|Ψ(t)〉 is the amplitude of finding the momentum p at the time t, which is of course
identical to the momentum-space wave function Φ(p, t). Thus we have

ih̄
∂

∂t
Φ(p, t) = Ĥ(− h̄

i

∂

∂p
, p)Φ(p, t), (T10.72)

which is the Schrödinger equation in the momentum representation (cf Lecture notes 2).
The derivation of (T10.71) and (T10.72) show that x̂ and p̂x (and hence also Ĥ) in the

position and momentum representations can be read straight out from the right-hand sides
of equations (T10.62) – (T10.67). This is because if we let e.g. p̂x act on a vector |ψ〉, we
get a new vector which we may call |ψ̃〉. This vector corresponds to the wave function

ψ̃(x′) = 〈x′ |ψ̃〉 = 〈x′ |p̂x|ψ〉
(T10.63)

=
h̄

i

∂

∂x′
〈x′ |ψ〉

=
h̄

i

∂

∂x′
ψ(x′). (T10.73)

This shows that the momentum operator in the position representation is h̄
i
∂
∂x′

; which can
be read out from the right-hand side of (T10.63).

As a small exercise, let us show that the Hilbert-space operators x̂ and p̂x satisfy the
commutation relation

[x̂, p̂x] = ih̄11. (T10.74)
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There are several ways to show this. Here we do it by using the completeness relation
together with (T10.62) and (T10.63):

x̂p̂x − p̂xx̂

=
∫
dx′ |x′〉〈x′ |(x̂p̂x − p̂xx̂)

=
∫
dx′ |x′〉(〈x′ |x̂p̂x − 〈x′ |p̂xx̂)

=
∫
dx′ |x′〉

(
x′〈x′ |p̂x −

h̄

i

∂

∂x′
〈x′ |x̂

)

=
∫
dx′ |x′〉

(
x′
h̄

i

∂

∂x′
〈x′ | − h̄

i

∂

∂x′
x′〈x′ |

)

=
∫
dx′ |x′〉

(
x′
h̄

i

∂

∂x′
〈x′ | − h̄

i

(
∂x′

∂x′

)
〈x′ | − x′ h̄

i

∂

∂x′
〈x′ |

)

=
∫
dx′ |x′〉 ih̄ 〈x′ | = ih̄11, q.e.d.

Notice the order of the factors:

〈x′ |x̂p̂x = x′〈x′ |p̂x = x′
h̄

i

∂

∂x′
〈x′ | ;

〈x′ |p̂xx̂ =
h̄

i

∂

∂x′
〈x′ |x̂ =

h̄

i

∂

∂x′
x′〈x′ |.

10.4 Matrix mechanics

In the preceeding section we saw that the position and momentum representations follow
when we project the equation of state (T10.60) on the |x〉- and |p〉-bases, respectively.
These are two of many possible representations. In this section we shall see what kind of
representation that results from the projection on a discrete basis.

10.4.a Matrix representations of vectors and operators

We consider a discrete set of basis vectors |1〉, |2〉, · · · , which are orthonormalized;

〈k |n〉 = δkn. (T10.75)

A vector
|a〉 = 11|a〉 =

∑
k

|k〉〈k |a〉 =
∑
k

〈k |a〉|k〉

may then be represented by the components (or “coordinates”) which we may call ak;

〈k |a〉 ≡ ak ; |a〉 =
∑
k

ak|k〉. (T10.76)
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These components may conveniently be collected in a column matrix a. Similarly, the bra
vector

〈a| =
∑
k

a∗k 〈k |

may be represented by the row matrix

a† = (a∗1 , a∗2 , . . .).
We note that this row matrix is the adjoint (or Hermitian conjugate) of the column matrix
a. 5 The scalar product may then be written as

〈b|a〉 = 〈b|11|a〉 =
∑
k

〈b|k〉〈k |a〉 =
∑
k

b∗k ak

= (b∗1 , b∗2 , . . .)


a1

a2
...

 ≡ b†a. (T10.77)

An operator Â is now represented by a matrix. This follows when we consider the
components of the vector |c〉 = Â|a〉, which are

〈k |c〉 = 〈k |Â|a〉 =
∑
n

〈k |Â|n〉〈n|a〉,

that is,
ck =

∑
n

Aknan,

or in matrix form: 
c1

c2
...

 =


A11 A12 · · ·
A21

...



a1

a2
...

 . (T10.78)

Similarly, employing two unit operators, we have

〈b|Â|a〉 =
∑
k,n

〈b|k〉〈k |Â|n〉〈n|a〉

= (b∗1 , b∗2 , . . .)


A11 A12 · · ·
A21

...



a1

a2
...


≡ b†Aa. (T10.79)

A product of two operators is represented by the product of the two matrices:

(ÂB̂)kn = 〈k |ÂB̂|n〉 =
∑
m

〈k |Â|m〉〈m|B̂|n〉 =
∑
m

AkmBmn,

that is,
(AB) = (A)(B). (T10.80)

For the adjoint of an operator Â we have from (T10.49)

(Â†)kn = 〈k |Â†|n〉 = 〈n|Â|k〉∗ = A∗nk, or

A† = Ã∗. (T10.81)

Thus the operator Â† is represented by the adjoint (or Hermitian conjugate) of the matrix.

5Taking the adjoint, or Hermitian conjugate, of a matrix corresponds to taking the transpose conjugate;
M† ≡ M̃∗.
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10.4.b Change of basis ***6

The freedom in the choice of basis makes it interesting to see how a change of basis works.
Suppose that we want to change from the original basis |k〉 (labeled by latin letters) to a
new discrete set |α〉 (α = 1, 2, . . .), labeled by greek letters (to distinguish between old and
new components). The new basis vectors can be expressed in terms of the old ones:

|α〉 =
∑
k

|k〉〈k |α〉 ≡
∑
k

|k〉Skα. (T10.82)

Here, Skα ≡ 〈k |α〉 is the projection of the new vector number α on the old vector number
k. Thus the numbers Skα are the components of the new vectors in the old basis. These
complex numbers may be collected in a matrix S. Thus we have

〈k |α〉 = Skα,

〈α|k〉 = 〈k |α〉∗ = S∗kα = (S†)αk. (T10.83)

If the new basis is to be orthonormal we must have

δβα
!

= 〈β |α〉 =
∑
k

〈β |k〉〈k |α〉 =
∑
k

S†βkSkα = (S†S)βα. (T10.84)

In the same manner,

δkn = 〈k |n〉 =
∑
α

〈k |α〉〈α|n〉 =
∑
α

SkαS
†
αn = (SS†)kn.

When these relations are satisfied, the matrix S is said to be unitary:

S†S = SS† = 11; S† = S−1, (unitarity). (T10.85)

We may call S the transformation matrix, because it gives the connection between vector
components in the old and new bases, and similarly for the operator matrices. Thus the new
matrix elements of the operator Â are

Aβα ≡ 〈β |Â|α〉 =
∑
k,n

〈β |k〉〈k |A|n〉〈n|α〉

=
∑
k,n

S†βkAknSnα,

or on matrix form:
Anew = S†AS. (T10.86)

Furthermore, the vector
|a〉 =

∑
k

|k〉〈k |a〉

is in the new basis represented by the components

aα ≡ 〈α|a〉 =
∑
k

〈α|k〉〈k |a〉 =
∑
k

S†αkak,

6not compulsory
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or on matrix form:
anew = S†a. (T10.87)

For a bra vector we find similarly

b∗β = 〈b|β 〉 =
∑
n

〈b|n〉〈n|β 〉 =
∑
n

〈n|b〉∗〈n|β 〉

=
∑
n

b∗nSnβ,

or on matrix form
b†new = b†S. (T10.88)

Such a unitary transformation (change of basis) of course does not alter the physics of
a given problem. For example, all scalar products are conserved under the transformation:
By combining (T10.75) – (T10.78) we find that

b†newAnewanew = (b†S)(S†AS)(S†a) = b†Aa.

This is how it should be, because the scalar product may also be written as 〈b|Â|a〉, which
is basis independent.

Diagonalization

Some times one wishes to find a new basis set {|α〉} which are eigenvectors of a given
operator Â,

Â|α〉 = aα|α〉, (T10.89)

so that the matrix Annew becomes diagonal:

Aβα = 〈β |Â|α〉 = aαδβα. (T10.90)

Thus the task of finding the eigenvalues of the operator Â is equivalent to diagonalizing the
A-matrix. This diagonalization problem, i.e., to find the components 〈k |α〉 (equal to Skα)
of the vectors |α〉, can in principle be solved starting with the non-diagonal matrix Akn (in
the old basis). This procedure is relevant when working with a finite-dimensional sub-space
of the Hilbert space. From (T10.89) we then have:

N∑
n=1

〈k |Â|n〉〈n|α〉 = aα〈k |α〉, that is,

∑
n

AknSnα = aαSkα ; α = 1, 2, · · · , N ;

or on matrix form: 
A11 A12 · · · A1N

A21
...

AN1 · · · ANN




S1α

S2α
...

SNα

 = aα


S1α

S2α
...

SNα

 . (T10.91)



TFY4250/FY2045 Lecture notes 10 - More general formulation of quantum mechanics 20

Column number α in the matrix S then is an eigenvector of the Akn matrix. By solving
this eigenvalue problem for the N eigenvalues aα, one finds the N columns of the matrix S.
Notice that the N eigenvalues are found by setting the system determinant equal to zero:

det[A− aα · 11] = 0. (T10.92)

Since the determinant is a polynomial in aα of degree N , it follows that this so-called
characteristic equation has N roots. These roots are the eigenvalues aα; α = 1, 2, · · · , N.
If one is interested only in the eigenvalues, it suffices to find these roots. If one also wishes
to find the vectors |α〉, then (T10.91) must be solved for the N eigenvalues aα, so that the
components Snα = 〈n|α〉 of |α〉 can be determined.

10.4.c Equation of state on matrix form

The projection of the equation of state (T10.60) on the |k〉 basis gives the equation

ih̄
d

dt
〈k |Ψ(t)〉 = 〈k |Ĥ|Ψ(t)〉 =

∑
n

〈k |Ĥ|n〉〈n|Ψ(t)〉,

or

ih̄
d

dt
Ψk(t) =

∑
n

HknΨn(t). (T10.93)

The time-dependent ”|k〉-components” Ψk(t) of |Ψ(t)〉 thus are given by a coupled set of
first-order differential equations in t. On matrix form:

ih̄
d

dt


Ψ1(t)
Ψ2(t)

...

 =


H11 H12 · · ·
H21

...




Ψ1(t)
Ψ2(t)

...

 . (T10.94)

Note that if one diagonalizes this Hamiltonian matrix, then the diagonal elements (i.e., the
eigenvalues of the H matrix) are the energies Eα of the stationary states of the system at
hand. These energies are determined by equation (T10.92):

det[H− Eα · 11] = 0. (T10.95)

Using the method described above, one can also find the corresponding eigenvectors |α〉 of
Ĥ, which correspond to the energy eigenstates of the system.

The matrix formulation of quantum mechanics is known as matrix mechanics, and is
the formulation that was actually found first, by Werner Heisenberg in 1925, a few months
before Schrødinger presented his wave mechanics.


