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Lecture notes 13

13 Addition of angular momenta
(8.4 in Hemmer, 6.10 in B&J, 4.4 in Griffiths)

Addition of angular momenta enters the picture when we consider a system
in which there is more than one contribution to the total angular momentum.
If we consider e.g. a hydrogen atom there are contributions both from the spin
of the electron and the orbital motion. Even in the case when the latter is zero
there are two contributions to the total angular momentum, because the proton
spin can of course not be neglected. We shall now see how these contributions
to the total angular momentum “add”, that is, we shall derive the rules for the
“addition” of angular momenta. It turns out that the sum of several angular
momenta is quantized according to the same rules that were derived in Lecture
notes 11.

12.1 Introduction

Classical addition of angular momenta

In classical mechanics the total angular momentum of two systems with angular momenta
L1 and L2 is given by the vector sum L = L1 + L2 :

Here the size L| = L| of the total angular momentum can vary between L1 + L2 and
|L1 − L2|, depending on the angle (α) between the two vectors L1 and L2. Thus in classical
mechanics L = |L| satisfies the ”triangle inequality”

|L1 − L2| ≤ L ≤ L1 + L2. (T13.1)

We shall now see that the total angular momentum is a meaningful quantity also in
quantum mechanics.



TFY4250/FY2045 Lecture notes 13 - Addition of angular momenta 2

Quantum-mechanical addition of angular momenta

The spins of the electron and the proton in a hydrogen atom have the same size, |Se| =

|Sp| = h̄
√

3/4. If we consider a hydrogen atom in the ground state, in which the orbital
angular momentum iz zero, what is then the total angular momentum due to the two spins,

|S| = |Se + Sp|? Will this quantity vary continuously between 0 and 2h̄
√

3/4, as one would
expect from the classical triangle inequality above?

The key to the quantum-mechanical answer to this question (which definitely is no) lies
in the fact that the two spins that we want to add are compatible observables. Therefore
the corresponding operators, which we may denote by Ŝ1 and Ŝ2, commute:

[Ŝ1i, Ŝ2j] = 0, i, j = x, y, z. (T13.2)

Since each of the operators Ŝ1 and Ŝ2 are angular-momentum operators, i.e. satisfy the
angular-momentum algebra, it is then easy to see that also the operator Ŝ = Ŝ1 + Ŝ2 is an
angular-momentum operator (i.e. satisfies the angular-momentum algebra). We have e.g.

[Ŝx, Ŝy] = [Ŝ1x + Ŝ2x, Ŝ1y + Ŝ2y]

= [Ŝ1x, Ŝ1y] + [Ŝ2x, Ŝ2y] + 0 + 0

= ih̄Ŝ1z + ih̄Ŝ2z = ih̄Ŝz. (T13.3)

But then our “theory of angular momenta” enters with full force. According to this theory,
the possible eigenvalues of Ŝ2 = (Ŝ1 + Ŝ2)

2 are h̄2s(s+ 1), where anything but integer or
half-integer quantum numbers s is excluded. In the case at hand we shall see that the possible
values are s = 0 and s = 1. According to the measurement postulate a measurement of
|Se + Sp| for the hydrogen ground state must then give either 0 or h̄

√
2, in sharp contrast

to the classical triangle inequality. In the next section, we shall show why the “addition” of
the two spins 1

2
must give either s = 0 or s = 1.

13.2 Addition of two spins 1
2

Instead of measuring the total spin |S1 + S2| and its z-component Sz , we can choose to
measure the z-components of the two spins separately. (The two spins are compatible; the
four operators Ŝ1z, Ŝ2z, Ŝ2

1 and Ŝ2
2 all commute with each other.) Such a measurement will

leave the system in one out of four states which can be represented by abstract vectors in
the following way:
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Here, |↑↓〉 ≡ |↑〉|↓〉 ≡ |↑1〉|↓2〉 e.g. stands for a state in which spin no 1 is up and spinn
no 2 is down. We then have

Ŝ1z|↑↓〉 =
(
Ŝ1z|↑1〉

)
|↓2〉 = 1

2
h̄ |↑↓〉, (m1 = 1

2
)

Ŝ2z|↑↓〉 = |↑1〉
(
Ŝ2z|↓2〉

)
= −1

2
h̄ |↑↓〉 (m2 = −1

2
).

We also note that for this state

Ŝz|↑↓〉 = (Ŝ1z + Ŝ2z) |↑↓〉 = 0 (m = m1 +m2 = 0).

Thus the four states are eigenstates also of Ŝz = Ŝ1z + Ŝ2z, with quantum numbers m =
m1 +m2 = 1, 0, 0 and −1, as indicated in the figure above.

The four states above together constitute a complete set of states for this two-spin system.
Therefore they can be used as a four-dimensional basis, in terms of which any state for
this system can be described. This means e.g. that the possible eigenstates |s,m〉 of the
operators Ŝ2 and Ŝz for the total spin can be expanded in terms of the four basis states
above, which we from now on may call the “old” states. We must expect to find altogether
four such “new” states |s,m〉, which can be expressed as linear combinations of the old
states |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉.

The quantum numbers m found above bring us a long way towards the solution of this
“mystery”, telling us that it is possible to find one new state with m = 1, one with m = −1
and two with m = 0. Then we don’t need much fantasy to guess that the ”new” states
are a triplet of states with s = 1 : |1, 1〉, |1, 0〉 and |1,−1〉, together with a singlet with
s = 0 : |0, 0〉.

These guesses are easily verified. Because the “old” state |↑↑〉 is the only one with
m = 1, we must expect that this state is the upper rung in a triplet ladder, with s = 1,
that is, an eigenstate of Ŝ2 with eigenvalue 2h̄2. This is verified by using equation (T11.37)
from Lecture notes 11, on the form

Ŝ2 = Ŝ2
z + h̄Ŝz + Ŝ−Ŝ+ = Ŝ2

z − h̄Ŝz + Ŝ+Ŝ−. (T13.4)

The first of these equations gives

Ŝ2|↑↑〉 = (Ŝ2
z + h̄Ŝz + Ŝ−Ŝ+)|↑↑〉

= (h̄2 + h̄h̄)|↑↑〉+ Ŝ−(Ŝ1+ + Ŝ2+)|↑1〉|↑2〉
= 2h̄2|↑↑〉, q.e.d., (T13.5)

since Ŝ1+|↑1〉 = 0 and Ŝ2+|↑2〉 = 0. (See the figure on page 11 in Lecture notes 12.)
Thus, if we prepare the state |↑↑〉 by measuring S1z and S2z, we have in fact at the same
time prepared a state with s = 1 and m = 1; the upper rung in the triplet ladder is
|1, 1〉 = |↑↑〉.

In the same manner we have that

Ŝ2|↓↓〉 = (Ŝ2
z − h̄Ŝz + Ŝ+Ŝ−)|↓↓〉

= [ h̄2 − h̄(−h̄)] |↓↓〉+ Ŝ+(Ŝ1− + Ŝ2−)|↓1〉|↓2〉
= 2h̄2|↓↓〉. (T13.6)

So the lower rung in the triplet ladder is |1,−1〉 = |↓↓〉.
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The “moral” so far is that the two states |↑↑〉 and |↓↓〉 with “extreme” m-values (m = 1
and m = −1) are also eigenstates of Ŝ2 and Ŝz (in addition to being eigenstates of Ŝ2

1, Ŝ2
2, Ŝ1z

and Ŝ2z), and are the upper and lower rungs in a triplet ladder.
We can find the “central” rung in the triplet ladder by using the ladder operator Ŝ−.

From (T11.52) we have the relations

Ŝ±|s,m〉 = h̄
√

(s∓m)(s+ 1±m) |s,m± 1〉, (T13.7)

which provide us with the following useful formulae:

Ŝ−|1, 1〉 = h̄
√

2 |1, 0〉 (T13.8)

and [cf (T12.21)]

Ŝ1−|↑1〉 ≡ Ŝ1−| 12 ,
1
2
〉 = h̄ |↓1〉 and Ŝ2−|↑2〉 = h̄ |↓2〉. (T13.9)

This gives for the central rung:

|1, 0〉 (8)
=

1

h̄
√

2
Ŝ− |1, 1〉 =

1

h̄
√

2
(Ŝ1− + Ŝ2−)|↑1〉|↑2〉

=
1

h̄
√

2

[(
Ŝ1−|↑1〉

)
|↑2〉+ |↑1〉

(
Ŝ2− |↑2〉

)]
(9)
=

1√
2

[ |↓1〉|↑2〉+ |↑1〉|↓2〉 ] (T13.10)

≡ 1√
2

( |↑↓〉+ |↓↑〉 ) . (T13.11)

We observe that this is a 50/50 linear combination of the “old” states with m = 0. This
completes the triplet ladder.

A small exercise: (1) Check that |1, 0〉 is normalized. (2) According to equation
(T13.7), |1,−1〉 = Ŝ−|1, 0〉/(h̄

√
2). Check that this formula gives the correct

result. (3) If the state |1, 0〉 is prepared by a measurement of S2 and Sz, what is
then the probability that a new measurement of S1z gives +1

2
h̄?

Now it only remains to find the singlet, the state with s = m = 0 (a “ladder” with only
one rung). This state too must be a linear combination of the two states |↑↓〉 and |↓↑〉
with m = 0, while it is orthogonal to |1, 0〉 (because the quantum numbers s are different).
Orthogonality is achieved simply by replacing the plus sign between the two terms by a
minus sign:

|0, 0〉 =
1√
2

( |↑1〉|↓2〉 − |↓1〉|↑2〉 ) ≡
1√
2

( |↑↓〉 − |↓↑〉 ) . (T13.12)

A small exercise: Check that this state is an eigenstate of Ŝ2 = Ŝ2
z + h̄Ŝz + Ŝ−Ŝ+

with eigenvalue equal to zero. [Hint: Ŝ+ = Ŝ1+ + Ŝ2+.]
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Conclusion and comments

(i) By measuring both S1z and S2z we can prepare the two-spin system in one of the
“old” states, |↑1↑2〉, |↑1↓2〉, |↓1↑2〉, |↓1↓2〉. In these states S1z and S2z have sharp values,
and so does Sz.

(ii) For these “old” states S2 is not sharp, except for |↑1↑2〉 and |↓1↓2〉, which happen
to be the upper and lower rungs in the triplet ladder. The reason that S2 is not sharp for
the other “old” states (|↑1↓2〉 and |↓1↑2〉) is that Ŝ2 does not commute with Ŝ1z and Ŝ2z.

(iii) If we choose instead to measure Sz and |S|, this spin system is prepared in one of
the “new” states, either in one of the triplet states

|1, 1〉 = |↑1↑2〉,

|1, 0〉 = 1√
2

( |↑1↓2〉+ |↓1↑2〉 ) ,

|1,−1〉 = |↓1↓2〉,

(triplet) (T13.13)

or in the singlet,

|0, 0〉 = 1√
2

( |↑1↓2〉 − |↓1↑2〉 ) . (singlet) (T13.14)

Here S1z and S2z are unsharp, except in the two states |↑1↑2〉 and |↓1↓2〉. The figure below
gives an illustration of both the old and the new states.

Remember: The “old” states on the left are prepared by measuring S1z and S2z separately.
The “new” states on the right are prepared by measuring the size |S| and the z-component
Sz of the total spin.

(iv) The singlet corresponds to S = 0, which means that the two spins S1 and S2 are

antiparallel. The triplet corresponds to an angle α = 2 arccos
√

2/3 ≈ 70.5◦ between the
two vectors S1 and S2. This is the closest the two spins come to being parallel.
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(v) The old and the new sets of states are both perfectly applicable as basis sets for
this two-spin system. We note, however, that the triplet and singlet states are respectively
symmetric and antisymmetric with respect to the interchange of the particle indices 1 and
2. This is important when the two particles (fermions) are identical. Then the total state
is required to be antisymmetric with respect to interchange. This can be achieved either
by combining a triplet spin state with a spatial wave function that is antisymmetric with
respect to interchange, or by combining the antisymmetric singlet state with a symmetric
spatial wave function.

A small exercise: Express the “old” states |↑1↓2〉 and |↓1↑2〉 in terms of the
“new” states |0, 0〉 and |1, 0〉. If we prepare |↑1↓2〉 by a measurement of S1z and
S2z, what are then the possible results of a new measurement of Sz and S2, and
what are the probabilities for these results?

13.3 General addition of angular momenta

It is easy to generalize the treatment above so that we can combine any two angular momenta.
If

|j1,m1〉 (m1 = −j1, −j1 + 1, ..., j1)

is a multiplet of eigenstates of the angular-momentum operators Ĵ2
1 and Ĵ1z, and

|j2,m2〉 (m2 = −j2, −j2 + 1, ..., j2)

is a multiplet of eigenstates of Ĵ2
2 and Ĵ2z, then we have a set of (2j1 + 1)(2j2 + 1) “old”

states of the type |j1,m1〉|j2,m2〉. The quantum numbers m1,m2 and m = m1 +m2 of these
states are illustrated on the left in the figure below for the case j1 = 3, j2 = 2, which gives
7× 5 = 35 old states.
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The “extreme” values of m here are m = j1 + j2 = 3 + 2 = 5 for the state |3, 3〉|2, 2〉 and
m = −j1 − j2 = −3− 2 = −5 for the state |3,−3〉|2,−2〉. It is easy to check that both
these states are eigenstates of Ĵ2 = (Ĵ1 + Ĵ2)

2 with the quantum number j = j1 + j2 = 5.
(In analogy with (T13.5) and (T13.6) one only needs to operate with Ĵ2 = Ĵ2

z ±h̄Ĵz + Ĵ∓Ĵ±.)
It follows that these two states are respectively the top rung ( |5, 5〉), and the bottom rung
(|5,−5〉) in a ladder for j = j1 + j2 = 5. The remaining rungs of this ladder can be found
by operating with Ĵ−.

The next-highest rung of this ladder, |5, 4〉, must be a linear combination of the two old
states with m = 4, which are |3, 3〉|2, 1〉 and |3, 2〉|2, 2〉. The other linear combination
of these two — orthogonal to the first one — turns out to be the top rung of a ladder for
j = j1 + j2− 1 = 4, that is |4, 4〉. This can be checked by operating with Ĵ2. Then one only
has to operate with Ĵ− to find the remaining rungs of this ladder.

We have now “spent” the old states with |m| ≥ 4. For m = 3, we have three old
states. The new states |5, 3〉 and |4, 3〉 are linear combinations of these three old states.
The third linear combination of these three old states — orthogoanl to |5, 3〉 and |4, 3〉 —
is the top rung of a ladder with j = j1 + j2 − 2 = 3.

For m = 2, there are four old states, allowing for four linear combinations. Three of
these enter the ladders for j = 5, 4 and 3. The fourth linear combination becomes the top
rung of a ladder with j = 2.

As shown in the figure, the number of old states increases to 5 for m = j1 − j2 = 1,
meaning that also in this case a new ladder enters the picture, with j = j1 − j2. But this
is the last time a new ladder appears; for m = j2 − j1 − 1 = 0 the number of old states
is still only five, and no new ladder enters. This way all the old states are “spent”. Thus,
in this example we end up with 5 multiplets with respectively 11, 9, 7, 5 and 3 new states,
which are all eigenstates of Ĵ2 and Ĵz. As illustrated in the figure, the number of new states
equals the number of old ones.

It important to note that the use of the ladder operator Ĵ− determines the coefficients
in the linear combinations, where the new states are expressed in terms of the old ones.
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We saw an example of this in the addition of two spins 1
2
. These coefficients are called

Clebsch–Gordan coefficients.
This example illustrates the general rules for the addition of two angular momenta, which

are: When j1 and j2” are “added”, the maximal and minimal values of j are

jmax = j1 + j2,

jmin = |j1 − j2|,
(T13.15)

and the allowed j-values in this interval are

j = |j1 − j2|, |j1 − j2|+ 1, · · · , j1 + j2. (T13.16)

We note that if both j1 and j2 are half-integral, or if both are integers, then the possible
quantum numbers j are integers. In the opposite case, when when either j1 or j2 is half-
integral while the other one is an integer, the resulting j-values become half-integral. Note
also that it is the quantum numbers that enter the triangular inequality this time (not the
sizes |Ĵ1| and |Ĵ2|, as we had in the classical case):

|j1 − j2| ≤ j ≤ j1 + j2.

(
(triangular
inequality)

)
(T13.17)

This method can easily be generalized to more than two angular momenta. One starts
with combining J1 and J2. Then the sum J12 of these is combined with J3, etc.

13.4 Commutation rules

Let us summarize the commutation rules for the two angular momenta that were added.
In analogy with (T13.2), the two operators Ĵ1 and Ĵ2 commute. Since the three operators
Ĵ1, Ĵ2 and Ĵ = Ĵ1 + Ĵ2 all satisfy the angular-momentum algebra, it follows in the usual
way that

[Ĵ2
1, Ĵ1] = 0, [Ĵ2

2, Ĵ2] = 0 and [Ĵ2, Ĵ] = 0.

It should be noted that also Ĵ2
1 and Ĵ2

2 commute with Ĵ2 and Ĵz:

[Ĵ2, Ĵ2
1] = [Ĵ2, Ĵ2

2] = 0 , [Ĵz, Ĵ
2
1] = [Ĵz, Ĵ

2
2] = 0.

[Show this by using that Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1·Ĵ2.] Thus, in the “new” states |j,m〉,
not only J2 = h̄2j(j + 1) and Jz = h̄m are sharp, but also J2

1 = h̄2j1(j1 + 1) and
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J2
2 = h̄2j2(j2 + 1). It is customary to state that j1 and j2 are “good quantum numbers”

in the new states, in addition to j and m.
We should also note that the “coupling term” Ĵ1·Ĵ2 has sharp values in the “new” states.

Using the relation Ĵ1·Ĵ2 = 1
2
(Ĵ2 − Ĵ2

1 − Ĵ2
2), we find that this coupling term commutes with

all the operators Ĵ2
1, Ĵ2

2, Ĵ2 and Ĵz:

[Ĵ1·Ĵ2, Ĵ
2
1] = [Ĵ1·Ĵ2, Ĵ

2
2] = [Ĵ1·Ĵ2, Ĵ

2] = [Ĵ1·Ĵ2, Ĵz] = 0. (T13.18)

And for a state with quantum numbers j,m, j1 and j2 we then have that

J1·J2 = 1
2
(J2 − J2

1 − J2
2) = 1

2
h̄2[j(j + 1)− j1(j1 + 1)− j2(j2 + 1)] (T13.19)

is sharp.
On page 4 we stressed that Ŝ2 does not commute with Ŝ1z and Ŝ2z. This is shown as

follows:

[Ĵ2, Ĵ1z] = [Ĵ2
1 + Ĵ2

2 + 2(Ĵ1xĴ2x + Ĵ1yĴ2y + Ĵ1zĴ2z) , Ĵ1z]

= 0 + 0 + 2[Ĵ1x, Ĵ1z]Ĵ2x + 2[Ĵ1y, Ĵ1z]Ĵ2y + 0

= −2ih̄Ĵ1yĴ2x + 2ih̄Ĵ1xĴ2y = 2ih̄(Ĵ1 × Ĵ2)z. (T13.20)

This can be generalized to
[Ĵ2, Ĵ1] = 2ih̄(Ĵ1 × Ĵ2), (T13.21)

and then you will probably be able to argue that

[Ĵ2, Ĵ2] = −2ih̄(Ĵ1 × Ĵ2). (T13.22)

From Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1·Ĵ2 it then follows that

[Ĵ1·Ĵ2, Ĵ1] = ih̄(Ĵ1 × Ĵ2) and [Ĵ1·Ĵ2, Ĵ2] = −ih̄(Ĵ1 × Ĵ2), (T13.23)

so that
[Ĵ1·Ĵ2, Ĵ] = 0. (T13.24)

Well, this was quite a few formulae, but it may be practical to have them collected this way,
for possible future reference.

13.5 Addition of orbital angular momentum and spin

An important example (e.g. if we want to study the hydrogen atom more closely) is the
addition of the orbital angular momentum L and the spin S of the electron:

J = L + S. (T13.25)

The triangular inequality (T13.17) then gives half-integral values for the quantum number
j for the total angular momentum J = L + S:

|l − 1
2
| ≤ j ≤ l + 1

2
.

For l = 0, we have J = S and j = s = 1
2
, so that we have two states, with Jz =

h̄m = ±1
2
h̄. (Here, the magnetic quantum number m denotes the z-component of the total

angular momentum.)
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For l ≥ 1 we have two possible values for j, namely j = l + 1
2

and j = l − 1
2
.

j = l + 1
2

: In this case L and S are as “parallel” as they can possibly be (for a given

l). As illustrated in the figure, the angle α between L and S then is not equal to zero:

j = l − 1
2

: In this case L and S are as “antiparallel” as they can possibly be (for a given l):

In both these cases, j and l are good quantum numbers. This means that the angle α
between L and S can be calculated by means of the relation J2 = L2 + 2L·S + S2, which
gives

L·S = 1
2
(J2 − L2 − S2) = 1

2
h̄2[ j(j + 1)− l(l + 1)− 3/4]. (T13.26)

This relation is a special case of (T13.19).

13.6 Addition of several angular momenta

The rules given above can also be used when there are more than two contributions to the
total angular momentum of a system:

J = J1 + J2 + J3 + · · · .

We may then start by combining J1 and J2 to J12 = J1 + J2. The possible quantum
numbers j12 are then limited by the triangular inequality:

|j1 − j2| ≤ j12 ≤ j1 + j2.

We continue by combining J12 with J3, and again use the triangular inequality. Continuing
this process, we end up finding all possible values of the resulting quantum number j. An
example is
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Nuclear spin

With the exception of ordinary hydrogen, all atomic nuclei consist of Z protons and N =
A−Z neutrons, where A is the nucleon number. The total angular momentum of a nucleus
A
ZX is called the nuclear spin and is denoted by an angular-momentum (spin) quantum
number I. Thus, a single proton or a single neutron has I = 1

2
.

Let us now see what the rules for the addition of angular moenta have to say about
the spin quantum number I of the “next” nucleus, the deuteron — the stable nucleus of
deuterium, 2

1H, “heavy” hydrogen.
There are in principle three contributions to the total angular momentum I (the spin) of

the deuteron. These are the spins Sp and Sn of the proton and the neutron and a possible
orbital aangular momentum L of the proton-neutron system:

I = Sp + Sn + L.

If we first imagine the two spins combined to S = Sp + Sn, then this can result either in a
triplet, characterized by the quantum number S = 1, or a singlet with S = 0. 1 Thus we
have two possibilities for the spin. Furthermore, from the addition rules for angular momenta
we can not rule out the possibility that the nutron-proton system in its ground state has a
non-zero orbital angular momentum, characterized by an integer quantum number L. When
this is combined either with S = 0 or S = 1, it follows that the deuteron must have an
integer quantum number I. This is as far as the addition rules can take us.

Experimentally it turns out that the spins of the proton and the neutron together form
a triplet, S = 1, while the resulting angular-momentum quantum number of the deuteron
is I = 1 (spin 1). The addition rules then limit the orbital angular-momentum quantum
number to the values L = 0, 1, 2. (All these can be combined with S = 1 to the resultant
I = 1.) Here it turns out that L = 1 is excluded (for reasons that we cannot enter into
here). Then two possibilities remain, one with L = 0 and one with L = 2. Experimen-
tally it turns out that the deuteron is in a superposition of these two states; L = 0 is the
dominating contribution, but there is also a small admixture of L = 2, which results in
a ground state for the deuteron deviating slightly from being spherically symmetric. This
deviation is an experimental fact. 2

From the discussion above, we understand that the spin quantum number (I) for a heavier
nucleus must be an integer for a nucleus with even nucleon number A and half-integral for
a nucleus with odd A.

Of the nuclei with even A it turns out that almost all have I = 0. The exceptions are
nuclei for which both N and Z are odd. In addition to the deuteron 2

1H (I = 1), there are
only a few such nuclei which are stable, two of which are 6

3Li (I = 1) and 14
7 N (I = 1). But

1When the spins or orbital angular momenta of several particles are added, it is customary to use capital
letters for the quantum numbers,

|S| = h̄
√
S(S + 1), |L| = h̄

√
L(L + 1).

It is also usual to use the capital letters S,P,D,F,G,H for states with L = 0, 1, 2, 3, 4, 5, in analogy with
the symbols s,p,d,f,g,h used for one-particle states with l = 0, 1, 2, 3, 4, 5.

2It may perhaps be somewhat confusing to learn that the ground state does not have a sharply defined
orbital angular momentum. This has to do with the fact that the strong nuclear force, which provides
the binding, is described by a model with a non-central potential. Then L̂ does not commute with the
Hamiltonian operator, and L is not a so-called “good quantum number”.
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there are of course many unstable “odd-odd” nuclei. An example is the cobalt isotope 60
27Co

with a life-time of around five years, which has I = 5.
Examples of nuclei with odd nucleon numbers are the iron isotopes 55

26Fe (I = 3/2, τ =
2.7 years) and 57

26Fe (I = 1
2
, stable), and the stable cobalt isotope 59

27Co, which has I = 7/2.
Another example is the relatively rare helium isotope 3

2He (helium-3) which has I = 1
2
.

From what was stated above it follows that all nuclei for which both Z and N are even
have spin zero (I = 0). An example is the α particle, the nucleus of 4

2He.

Resulting spin, orbital angular momentum and total angular momentum for
atomic electrons

As an example we may consider carbon, with the electron configuration 1s22s22p2 in the
ground state. The spins and the orbital angular momenta in the closed 1s and 2s shells both
add up to zero. Therefore, the quantum numbers S, P and J for the total spin, the total
orbital angular momentum and the total angular momentum of the six electrons in carbon
are determined by the two 2p electrons.

For the two spins there are two possibilities: They can either form a singlet (S = 0) or a
triplet (S = 1). If they are in the singlet state, we remember from the explicit construction
of this state that it it is antisymmetric with respect to interchange of the two electrons.
The Pauli principle then requires that the spatial state of the two electrons is symmetric.
(We remember that the “total” state of the two identical electrons must be antisymmetric
with respect to interchange of the particle indices, according to Pauli’s exclusuion principle.)
Carrying through the coupling of the spatial states with l1 = 1 and l2 = 1 explicitly, one
finds (cf exercise) that the resulting spatial states for L = 1 are antisymmetric, while the
states for L = 0 and L = 2 are symmetric with respect to interchange. Thus the states
with L = 0 and L = 2 can be combined with the singlet spin state. The resulting total
states are denoted respectively by

1S0 and 1D2.

Here the upper index gives the spin multiplicity 2S+ 1. The letters S and D signify that the
total orbital angular momentum quantum number L is respectively zero and 2. The lower
index is the quantum number J , which here equals L, since S = 0. Thus the notation is

2S+1(L− letter)J .

The other possibility is that the spins form a triplet (S = 1) (which is symmetric with
respect to interchange). The only possibility for the orbital quantum number L then is
L = 1, so that the state is characterized by 3PJ . On combining S = 1 and L = 1 we have
three possibilities for the quantum number J of the total angular momentum: J = 0, 1, 2.
Experiments show that the lowest energy for the carbon atom (and hence the ground state) is
obtained when S = 1, L = 1 and J = 0. So, the ground state for carbon can be denoted
by 3P0.

The table below shows the configuration and the resulting quantum numbers L, S and J
for a selection of elements. Here we see that helium, neon and all the other noble gases have
1S0, that is a total spin S = 0, total orbital angular momentum L = 0 and hence also
total angular momentum J = 0. In view of this, it is perhaps not very strange to find that
the alkali metals sodium and potassium etc, with one electron in an s-state outside filled
shells, get the same quantum numbers as hydrogen, namely 2S1/2.
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Ground-state configuration for some elements

Z Element Configuration Symbol

1 H 1s 2S1/2

2 He (1s)2 1S0

3 Li [He](2s) 2S1/2

4 Be [He](2s)2 1S0

5 B [He](2s)2(2p) 2P1/2

6 C [He](2s)2(2p)2 3P0

7 N [He](2s)2(2p)3 4S3/2

8 O [He](2s)2(2p)4 3P2

9 F [He](2s)2(2p)5 2P3/2

10 Ne [He](2s)2(2p)6 1S0

11 Na [Ne](3s) 2S1/2


