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Lecture notes 3

3. Some one-dimensional potentials
These notes are a supplement to sections 3.1, 3.3 and 3.5 in Hemmer’s book.

3.1 General properties of energy eigenfunctions

(Hemmer 3.1, B&J 3.6)

For a particle moving in a one-dimensional potential V (x), the energy eigenfunctions are the
acceptable solutions of the time-independent Schrödinger equation Ĥψ = Eψ:(

− h̄2

2m

∂2

∂x2
+ V (x)

)
ψ = Eψ, or

d2ψ

dx2
=

2m

h̄2 [V (x)− E]ψ. (T3.1)

3.1.a Energy eigenfunctions can be chosen real

Locally, this second-order differential equation has two independent solutions. Since V (x)
and E both are real, we can notice that if a solution ψ(x) (with energy E) of this equation
is complex, then both the real and the imaginary parts of this solution,

<e[ψ(x)] =
1

2
[ψ(x) + ψ∗(x)] and =m[ψ(x)] =

1

2i
[ψ(x)− ψ∗(x)],

will satisfy (T3.1), for the energy E. This means that we can choose to work with two
independent real solutions, if we wish (instead of the complex solutions ψ(x) and ψ∗(x)).
An example: For a free particle (V (x) = 0),

ψ(x) = eikx, with k =
1

h̄

√
2mE

is a solution with energy E. But then also ψ∗(x) = exp(−ikx) is a solution with the same
energy. If we wish, we can therefore choose to work with the real and imaginary parts of
ψ(x), which are respectively cos kx and sin kx, cf particle in a box.

Working with real solutions is an advantage e.g. when we want to discuss curvature
properties (cf section 3.1.c).

3.1.b Continuity properties [Hemmer 3.1, B&J 3.6]

(i) For a finite potential, |V (x)| < ∞, we see from (T3.1) that the second derivative of
the wave function is everywhere finite. This means that dψ/dx and hence also ψ must be
continuous for all x:

dψ

dx
and ψ(x) are continuous (when |V (x)| <∞). (T3.2)
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This holds provided that the potential is finite, and therefore even if it is discontinuous, as
in the examples

which show model potentials for a square well, a potential step and a barrier.
(ii) For a model potential V (x) which is infinite in a region (e.g. inside a “hard wall”),

it follows from (T3.1) that ψ must be equal to zero in this region. So here classical and
quantum mechanics agree: The particle can not penetrate into the “hard wall”. For such a
potential, only the wave function ψ is continuous, while the derivative ψ′ makes a jump. An
example has already been encountered for the particle in a box:

3.1.c Potentials with δ-function contributions

Some times we use model potentials with delta-function contributions (δ walls and/or bar-
riers).

The figure shows a potential

V (x) = Ṽ (x) + αδ(x− a) (α < 0),

where Ṽ (x) is finite, with a delta-function well in addition, placed at x = a. We can now
write (T3.1) on the form

d2ψ

dx2
=

2m

h̄2

[
Ṽ (x)− E

]
ψ(x) +

2mα

h̄2 δ(x− a)ψ(x).

This equation can be integrated over a small interval containing the delta well:∫ a+∆

a−∆

d2ψ

dx2
dx =

2m

h̄2

∫ a+∆

a−∆

[
Ṽ (x)− E

]
ψ(x)dx+

2mα

h̄2

∫ a+∆

a−∆
δ(x− a)ψ(x)dx,

or

ψ′(a+ ∆)− ψ′(a−∆) =
2m

h̄2

∫ a+∆

a−∆

[
Ṽ (x)− E

]
ψ(x)dx+

2mα

h̄2 ψ(a).
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In the limit ∆→ 0, the integral on the right becomes zero, giving the result

ψ′(a+)− ψ′(a−) =
2mα

h̄2 ψ(a) (T3.3)

when V (x) = Ṽ (x) + αδ(x− a).

Equation (T3.3) shows that the derivative makes a jump at the point x = a, and that the
size of this jump is proportional to the “strength” (α) of th δ-function potential, and also to
the value ψ(a) of the wave function at this point. (If the wave function happens to be equal
to zero at the point x = a, we note that the wave function becomes smooth also at x = a.)
Thus, at a point where the potential has a delta-function contribution, the derivative ψ′

normally is discontinuous, while the wave function itself is continuous everywhere (because
ψ′ is finite). This discontinuity condition (T3.3) will be employed in the treatment of the
δ-function well (in section 3.3).

3.1.c Curvature properties. Zeros [B&J p 103-114]

By writing the energy eigenvalue equation on the form

ψ′′

ψ
= −2m

h̄2 [E − V (x)] , (T3.4)

we see that this differential equation determines the local relative curvature of the wave
function, ψ′′/ψ, which is seen to be proportional to E − V (x), the kinetic energy.

(i) In classically allowed regions, which by definition is where E > V (x), this rela-
tive curvature is negative: Then ψ′′ is negative wherever ψ is positive, and vice versa. This
means that ψ(x) curves towards the x axis:

A well-known example is presented by the solutions ψn(x) =
√

2/L sin knx for the one-
dimensional box. Here,

ψ′′n
ψn

= −2m

h̄2 En ≡ −k2
n, kn = n

π

L
.

Thus a relative curvature which is constant and negetive corresponds to a sinusoidal solution.
(See the figure in page 3 of Lecture notes 2.) We note that the higher the kinetic energy (E)
and hence the wave number (k) are, the faster ψ will curve, and the more zeros we get.

(ii) In classically forbidden regions, where E − V (x) is negative, the relative curvature
is positive: In such a region, ψ′ is positive wherever ψ is positive, etc. The wave function ψ
will then curve away from the axis.
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A central example is the harmonic oscillator. For a given energy En, the particle will
according to classical mechanics oscillate between two points which are called the classical
turning points. These are the points where En = V (x), that is, where the “energy line”
crosses the potential curve. Classically, the regions outside the turning points are forbidden.
In quantum mechanics, we call these regions classically forbidden regions. In these regions
we note that the energy eigenfunctions ψn(x) curve away from the axis.

In the classically allowed regions (between the turning points) we see that the energy
eigenfunctions ψn(x) curve towards the axis (much the same way as the box solutions), and
faster the higher En (and hence En − V (x)) are. As for the box, we see that the number of
zeros increases for increasing En. Then perhaps it does not come as a surprise that

the ground state of a one-dimensional potential does not have any zeros.

Because En − V (x) here depends on x, the eigenfunctions ψn(x) are not sinusoidal in
the allowed regions. We note, however, that they in general get an oscillatory behaviour.
For large quantum numbers (high energies En), the kinetic energy En − V (x) will be ap-
proximately constant locally (let us say over a region covering at least a few “wavelengths”).
Then ψn will be approximately sinusoidal in such a region. An indirect illustration of this is
found on page 58 in Hemmer and in 4.7 in B&J, which shows the square of ψn, for n = 20.
(When ψn is approximately sinusoidal locally, also |ψn|2 becomes sinusoidal; cf the relation
sin2 kx = 1

2
(1− cos 2kx).) 1

1When E − V (x) is approximately constant over a region covering one or several wavelengths, we can
consider k(x) ≡ h̄−1

√
2m(E − V (x)) as an approximate “wave number” for the approximately sinusoidal

wave function. This ”wave number” increases with E − V (x) . This is illustrated in the diagrams just
mentioned, where we observe that the ”wavelength” (λ(x) ≡ 2π/k(x)) is smallest close to the origin, where
the kinetic energy is maximal.
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(iii) In a classical turning point, where V (x) = E, we see from (T3.4) that ψ′′/ψ = 0.
This means that the wave function has a turning point in the mathematical sense, where the
curvature changes sign. 2

For piecewise constant potentials (see below) it may happen that an energy eigenvalue
is equal to one of the constant potential values. We then have V (x) = E i a certain
region, so that ψ′′ is equal to zero. In this region, ψ itself must then be a linear function,
ψ = Ax+B. The figure shows a box potential with an extra well in the middle. The size
of this well can be chosen in such a way that the energy of the ground state becomes exactly
equal to zero. Outside the central well we then have E = V = 0, giving a linear wave
function in these regions, while it is sinusoidal in the central region.

3.1.d Degree of deneracy [B&J p 110]

The one-dimensional box and the one-dimensional harmonic oscillator have non-degenerate
energy levels. With this we mean that there is only one energy eigenfunction for each
energy eigenvalue En. It can be shown that this holds for all one-dimensional potentials, for
bound states:

Bound energy levels in one-dimensional potentials are non-degenerate,
meaning that for each (discrete) energy level there is only one energy
eigenfunction.

(T3.5)

Since the one-dimensional time-independent Schrödinger equation is of second order, the
number of independent eigenfunctions for any energy E is maximally equal to two, so that
the (degree of) deneracy never exceeds 2. 3 For unbound states, we can have degeneracy
2, but it also happens that there is only one unbound state for a given energy (see the
example below).

Proof (not compulsory in FY1006/TFY4215): These statements can be
proved by an elegant mathematical argument: Suppose that ψ1(x) and ψ2(x)
are two energy eigenfunctions with the same energy E. We shall now exam-
ine whether these can be linearly independent. From the time-independent

2For finite potentials we see from (T3.4) that ψ′′ is also equal to zero at all the nodes of ψ(x). Thus, all
the nodes (zeros) of ψ(x) are mathematical turning points, but at these nodes the relative curvature does
not change sign; cf the figure above.

3The (degree of) degeneracy for a given energy level E is defined as the number of linearly independent
energy eigenfunctions for this energy.
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Schrödinger equation, on the form

d2ψ/dx2

ψ
≡ ψ′′

ψ
=

2m

h̄2 [V (x)− E] , (T3.6)

it follows that
ψ′′1
ψ1

=
ψ′′2
ψ2

, i.e., ψ′′1ψ2 − ψ′′2ψ1 = 0, (T3.7)

or

d

dx
(ψ′1ψ2 − ψ′2ψ1) = 0, i.e., ψ′1ψ2 − ψ′2ψ1 = constant, (independent of x).

(T3.8)
If we can find at least one point where both ψ1 and ψ2 are equal to zero, it follows
that this constant must be equal to zero, and then the expression ψ′1ψ2 − ψ′2ψ1

must be equal to zero for all x. Thus we have that

ψ′1
ψ1

=
ψ′2
ψ2

.

This equation can be integrated, giving

lnψ1 = lnψ2 + lnC, or ψ1 = Cψ2. (T3.9)

Thus, the two solutions ψ1(x) and ψ2(x) are not linearly independent, but are
one and the same solution, apart from the constant C. Thus, if we can find at
least one point where the energy eigenfunction must vanish, then there exists
only one energy eigenfunction for the energy in question.

This is what happens e.g. for bound states in one dimension. A bound-state
eigenfunction must be square-integrable (i.e., localized in a certain sense), so
that the wave function approaches zero in the limits x→ ±∞. Then the above
constant is equal to zero, and we have no degeneracy, as stated in (T3.5).

An example is given by the step potential above, for states with 0 < E < V0. Here, the
solution in the region to the right must approach zero exponentially, because E is smaller
than V0. We can then show that there is only one energy eigenfunction for each energy in
the interval 0 < E < V0, even if this part of the energy spectrum is continuous. Note that
these states are unbound, because the eigenfunctions are sinusoidal in the region to the left.

For E > V0, on the other hand, it turns out that we have two solutions for each energy,
as is also the case for the free particle in one dimensjon.
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Some small exercises:

1.1 Show that the classically allowed region for the electron in the ground state
of the hydrogen atom is given by 0 ≤ r < 2a0, where a0 is the Bohr radius.

1.2 The figure shows a potential V (x) = k|x| and a sketch of an energy eigen-
function ψE(x) with energy E for this potential.
a. Why is E the third excited energy level for this potential?
b. Show that the classical turning points for the energy E lie at x = ±E/k.
c. Why must possible zeros of an energy eigenfunction for this potential lie be-
tween the classical turning points for the energy in question? [Hint: Consider
the curvature outside the classical turning points.]
d. Why has this potential no unbound energy eigenstates?

3.1.e Symmetric potentials [Hemmer p 71, B&J p 159]

For symmetric potentials, we shall see in chapter 4 that it is possible to find energy
eigenfunctions (eigenfunctions of Ĥ) which are either symmetric or antisymmetric.

For bound states, corresponding to non-degenerate energy levels, it turns out that the
energy eigenfunctions for a symmetric potential have to be either symmetric or antisym-
metric. Well-known examples are the box eigenstates (with x = 0 at the midpoint of the
box) and the eigenfunctions of the harmonic oscillator, which are alternating symmetric and
antisymmetric. The same holds for the bound states of the (finite) square well. For the
latter case, we shall see that the symmetry properties simplify the calculations.

In cases where there are two energy eigenfunctions for each energy (which happens for
unbound states), it is possible to find energy eigenfunctions with definite symmetry (that is,
one symmetric and one antisymmetric solution), but in many cases it is then relevant to work
with energy eigenfunctions which are asymmetric (linear combinations of the symmetric
and the antisymmetric solution). This is the case e.g. in the treatment of scattering against
a potential barrier and a potential well (see section 3.6 below).

3.2 The square well [Hemmer 3.3, B&J 4.6]
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The finite potential well, or square well, is useful when we want to model so-called quan-
tum wells or hetero structures. These are semiconductors consisting of several layers of
different materials. In the simplest case, the region between x = −l and x = +l rep-
resents a layer where the electron experiences a lower potential energy than outside this
layer. When we disregard the motion along the layer (in the y and z directions), this can be
described (approximately) as a one-dimensional square well.

3.2.a General strategy for piecewise constant potentials

The potential above is an example of a so-called piecewise constant potential. The strat-
egy for finding energy eigenfunctions for such potentials is as follows:

1. We must consider the relevant energy regions separately. (In this case these are E > V0

and 0 < E < V0).

2. For a given energy region (e.g. E < V0), we can find the general solution of the time-
independent Schrödinger equation Ĥψ = Eψ for each region in x (here I, II and III),
expressed in terms of two undetermined coefficients: 4

(i) In classically allowed regions, where E − V > 0, we then have

ψ′′ = −2m

h̄2 (E − V )ψ ≡ −k2ψ; k ≡ 1

h̄

√
2m(E − V ), (T3.10)

with the general solution
ψ = A sin kx+B cos kx. (T3.11)

(ii) In classically forbidden regions, where E < V, we have

ψ′′ =
2m

h̄2 (V − E)ψ ≡ κ2ψ ; κ ≡ 1

h̄

√
2m(V − E), (T3.12)

with the general solution 5

ψ = Ce−κx +Deκx. (T3.13)

Try to always remember this:

Sinusoidal solutions (curving towards the x axis) in classically allowed
regions; exponential solutions (curving outwards) in classically forbidden
regions.

(T3.14)

3. The last point of the program is: Join together the solutions for the different regions
of x in such a way that both ψ and ψ′ = dψ/dx become continuous (smooth joint). Possible
boundary condtions must also be taken into account, so that resulting solution ψ(x) becomes

4Remember that the second-order differential equation Ĥψ = Eψ always has two independent solutions,
locally.

5(iii) In exceptional cases, when E = V in a finite region, we have ψ′′ = 0, so that the general solution
in this region is ψ = Ax+B.
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an acceptable eigenfunction of Ĥ. (This programme must be implemented for each of the
relevant energy regions mentioned under 2 above.)

NB! When ψ and ψ′ both are continuous, we note that also ψ′/ψ is continuous. It is
often practical to use the continuity of ψ together with that of ψ′/ψ, as we shall soon see.
(The quantity ψ′/ψ is called the logarithmic derivative, because it is the derivative of lnψ.)

3.2.b Bound and unbound states

For E > V0 one finds that the energy spectrum of the square well is continuous, with two
independent energy eigenfunctions for each energy, as is the case for a free particle. These
wave functions describe unbound states, which are not square integrable.

For E < V0 one finds that the energy is quantized, with one energy eigenfunction for
each of the discrete energy levels. These levels thus are non-degenerate. This is actually the
case for all bound states in one-dimensional potentials.

As discussed above, it turns out that the bound-state energy eigenfunc-
tions are alternating symmetric and antisymmetric with respect to the
midpoint of the symmetric well: The ground state is symmetric, along
with the second excited state, the 4th, the 6th, etc. The first excited state
is antisymmetric, along with the third excited state, the 5th, the 7th, etc.
These properties actually are the same for all bound states in symmetric
one-dimensional potentials. (See Lecture notes 4, where this property is
proved.)

The “moral” is that when we want to find bound states in a symmetric potential, we can
confine ourselves to look for energy eigenfunctions that are either symmetric or antisymmet-
ric.6

3.2.c Boundary conditions and continuity leads to energy quanti-
zation

As in B&J, we shall now see how the energy eigenvalues and the energy eigenfunctions
can be obtained, assuming that the eigenfunctions are either symmetric or antisymmetric.
Following the general procedure outlined above, we write down the general solutions for each
of the regions I, II and III:

I: x < −l II: −l < x < l III: x > l

ψ = Ceκx +De−κx ψS = B cos kx ψ = C ′e−κx +D′eκx

ψA = A sin kx

κ = 1
h̄

√
2m(V0 − E) k = 1

h̄

√
2mE

6Hemmer shows how these symmetry properties emerge when one solves the eigenvalue equation (explic-
itly), without assuming symmetry or antisymmetry. Thus these properties are determined by the eigenvalue
equation. In section 3.3 we shall see how this works for the harmonic oscillator potential.
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ψ′/ψ = κ ψ′S/ψS = −k tan kx ψ′/ψ = −κ
ψ′A/ψA = k cot kx.

Here, there are several points worth noticing:
(i) Firstly, we must take into account the following boundary condition: An eigen-

function is not allowed to diverge (become infinite), the way D′ exp(κx) does when x→∞
or the way D exp(−κx) does when x→ −∞. Therefore we have to set the coefficients D
and D′ equal to zero.

(ii) Secondly, the general solution for region II (inside the well) really is ψ = A sin kx+
B cos kx. However, here we can allow ourselves to assume that the solution is either sym-
metric (ψS = B cos kx, and C ′ = C) or antisymmetric (ψA = A sin kx and C ′ = −C).

(iii) But still we have not reached our goal, which is to determine the energy. The figure
shows how the “solution” would look for an arbitrary choice of E.

Here we have chosen B/C such that ψ is continuous for x = ±l. But as we see, the resulting
function ψ(x) has “kinks” for x = ±l; the joints are not smooth, as they should be for an
eigenfunction.

We could of course make the kinks go away by adding a suitable bit of the solution Deκx

to the solution for region III, on the right (and similarly on the left). But then the resulting
solution would diverge in the limits x→ ±∞, and that is not allowed for an eigenfunction,
as stated above.

The “moral” is that there is no energy eigenfunction for the energy chosen above. If
we try with a slightly higher energy E (corresponding to a slightly larger wave number k
in region II), the cosine in region II will curve a little bit faster towards the x axis, while
C exp(±κx) on the right and on the left will curve a little bit slower (because κ ∝

√
V0 − E

becomes smaller when E increases). If we increase E too much, the cosine will curve too
much, so that we get kinks pointing the other way. Thus, it is all a matter of finding the
particular value of the energy for which there is no kink.

As you now probably understand, we get energy quantization for 0 < E < V0; only one
or a limited number of energies will give smooth solutions, that is, energy eigenfunctions.
The correct values of E are found in a simple way by using the continuity of the logartithmic
derivative ψ′/ψ for x = −l. This leads to the conditions

κ =

{
k tan kl (S),
−k cot kl = k tan(kl − 1

2
π) (A),

(T3.15)

for respectively the symmetric and the antisymmetric case. Multiplying by l on both sides
and using the relations

kl =
l

h̄

√
2mE and κl =

l

h̄

√
2m(V0 − E) =

√
2mV0l2

h̄2 − (kl)2,
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we can write the conditions on the form

κl =

√
2mV0l2

h̄2 − (kl)2 = kl tan kl (S),

(T3.16)

κl =

√
2mV0l2

h̄2 − (kl)2 = kl tan(kl − 1
2
π) (A),

where both the left and right sides are functions of kl, that is, of the energy E. Since the
left and right sides are different functions of kl, we understand that these conditions will be
satisfied only for certain discrete values of kl. The k values can be determined graphically
by finding the ponts of intersection between the tangent curves (right side) and the left side.
As a function of kl we see that the left side is a quarter of a circle with radius√

2mV0l2

h̄2 ≡ γ. (T3.17)

This radius (which is here denoted by γ) depends on the parameters in this problem, which
are the mass m and the parameters V0 and l of the well.

The figure shows the tangent curves, which are independent of the parameters, and the
points of intersection between these curves and the circle κl for a radius γ = 5. In this
case we find two symmetric solutions (see the filled points 1 and 3) and two antisymmetric
solutions (see the “open” points 2 and 4).

By reading out the coordinates kil and κil of these points of intersection, we can find the
energies and the binding energies of the ground state (1) and the three excited states (2,3,4)
which are found for a well with γ = 5. These are respectively 7

Ei =
h̄2k2

i

2m
=
h̄2(kil)

2

2ml2
; (EB)i ≡ V0 − Ei =

h̄2κ2

2m
=
h̄2(κil)

2

2ml2
, i = 1, 4. (T3.18)

7The binding energy is defined as the energy that must be supplied to liberate the particle from the well,
here V0 − E.
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3.2.d Discussion

From the figure above it is clear that the number of bound states depends on the dimen-

sionless quantity γ =
√

2mV0l2/h̄
2, that is, on the mass and the parameters V0 and l of

the well. For γ = 3, we see that there are only two bound states. The diagram also tells
us that if γ does not exceed π/2, there is only one bound state. For γ < π/2 (e.g. γ = 1)
we thus have only one bound state, the symmetric ground state. The bound ground state,
on the other hand, exists no matter how small γ is, that is, no matter how narrow and/or
shallow the well is.

Let us now imagine that the product V0l
2 is gradually increased, corresponding to a

gradual increase of γ. From the diagram we then understand that a new point of intersection
will appear every time γ passes a multiple of π/2. This simply means that the number of
bound states equals 1 + the integer portion of γ/(1

2
π):

number of bound states = 1 +

[
1

1
2
π

√
2mV0l2/h̄

2

]
(T3.19)

(where [z] stands for the largest integer which is smaller than z. For example, [1.7] = 1).
From the figure we also see that when γ has just passed a multiple of π/2, then the value

of κl for the “newly arrived” state is close to zero. The same then holds for the binding
energy EB = h̄2(κl)2/(2ml2). The ”moral” is that when the well (that is, γ) is just large
enough to accomodate the ”new” state, then this last state is very weakly bound. This
also means that the wave function decreases very slowly in the classically forbidden regions.
[For example, C exp(−κx) decreases very slowly for x > l when κ is close to zero.]

The figure on the left below gives a qualitative picture of the resulting (bound-state)
eigenfunctions of a well which is large enough to accomodate three bound states.

For comparison, the figure on the right shows the first three solutions for a box of the same
width (2l) as the well. In both cases we have used the “energy lines” as “x axis” (abscissa
axis). There is a lot of “moral” to be gained from these graphs:

(i) The box may be viewed as a well in the limit where V0 goes to infinity. We see that for
the well, with a finite V0, the eigenfunctions ψn(x) “penetrate“ into the classically forbidden
regions (where E < V0). On the right side, this penetration takes place in terms of the
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“exponential tail” C exp(−κx). This kind of penetration into classically forbidden regions
is characteristic for all bound states; the wave functions — and hence also the probability
densities — are different from zero in regions where the particle can not be found according
to classical mechanics.

In the case at hand, we see that the probability density at the position x = l + 1
2κ

is
reduced by a factor 1/e compared to the value at x = l. Therefore, we may define the
length 1/2κ as a penetration depth:

lp.d. ≡
1

2κ
=

h̄√
2m(V0 − E)

(penetration depth). (T3.20)

We see that this penetration depth decreases for increasing V0 − E . The larger V0 − E
is, the “more forbidden” is the region on the right, and the smaller the penetration depth
becomes.

(ii) We also notice that the penetration makes the wavelengths λi in the classically
allowed regions smaller than the corresponding wavelengths for the box. The wave numbers
ki = 2π/λi then become a little smaller than for the box, and the same holds for the energies,
as is indicated in the figure above.8

(iii) Apart from these differences, we observe that the box model gives a qualitatively
correct picture of the well solutions. For a larger well, with a larger number of bound states,
these differences become less important. We should also keep in mind that even the square
well is only an idealized model of a more realistic well potential (which is continuous, unlike
the square well). For such a realistic well, the mathematics will be even more complicated
than for the square well.

Based on the comparison above, we expect that a square well will give a reasonably
correct description of the states of a more realistic well, and many of the properties of the
square-well solutions are fairly well described by the box model. In all its simplicity the box
model therefore is a much more important model in quantum mechanics than one might
believe from the start.

Important examples are as mentioned heterostructures used in electronics, optics and
optoelectronics. The width then typically is several nanometers, which means that we have
to do with fairly wide wells, with a large number of states. The box approximation may
then be quite good.

Another example from solid-state physics is the free-electron-gas model, where a piece
of a metal can be considered as a potential well, in which a large number of conduction elec-
trons (one or more per atom) are moving approximately as free particles in the metal volume.
For such a well of macroscopic dimensions, the box model is an excellent approximation.

8The same message is obtained from the figure on page 11. Here the abscissa of the point of intersection is
kj l, and in the figure you can observe that kj l is always smaller than j times π/2. Note that the corresponding
wave number for box state number j is given by

kboxj · 2l = j · π, that is, kboxj l = jπ/2.
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Some small exercises:

2.1 The figure on the left shows a probability density P (x) distributed evenly
over the interval (−1

2
L, 1

2
L).

a. Argue that the root of the mean square deviation from the mean value (∆x)
is larger than 1

4
L.

b. Show that ∆x = L/
√

12 ≈ 0.29L.
c. The graph on the right shows the probability density |ψ2(x)|2 of the energy
state ψ2 for a particle in a box. What is the expectation value 〈x 〉 here? Argue
that ∆x is larger than 1

4
L.

2.2 The figure above shows a potential V (x) and a funktion ψ(x). Why cannot
this fuction ψ(x) be an energy eigenfunction for the energy E marked in the
figure? [Hint: What is wrong with the curvature?]

2.3 Why has the potential in the figure no bound states (energy eigenfunctions)
with energy E > V0 ? [Hint: Check the general solution of the time-independent
Schrödinger equation for x > 2a and E > V0.]

2.4 Use the diagram on page 11 to answer the following questions:

a. Even for a very small well (γ =
√

2mV0l2/h̄
2 → 0) there is always one bound

state. Check that E → V0 and EB/E → EB/V0 → 0 when γ → 0. [Hint:
EB/E can be expressed in terms of the ratio κ/k.]
b. If we let the “strength” γ of the well increase gradually, the first excited state
will appear just when γ passes 1

2
π. What can you say about E and EB/E for

this state when γ is only slightly larger than 1
2
π? What can you say about E

and EB/E for the second excited state when γ is only slightly larger than π?
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2.5 The figure shows an energy eigenfunction for the well, which behaves as
ψ ∼ e−κx for x > l, where κ is positive, but very close to zero. How large is
the binding energy EB = V0 − E of this state? How large is the wave number
k (for the solution in the classically allowed region)? How large is the “strength”
γ of the well?

2.6 Show that the penetration depth for an electron with EB = V0 − E = 1
eV is approximately 2 Ångstrøm.

3.2.e Discussion of energy quantization based on curvature proper-
ties***9

It is instructive to study the energy quantization in light of the curvature properties of the
eigenfunctions. As discussed on page 3, the eigenvalue equation determines the relative
curvature

ψ′′

ψ
= −2m

h̄2 [E − V (x)] (T3.21)

of the eigenfunction, as a function of V (x) and E.
Let us imagine that we use a computer program to find a numerical solution of this

equation for a given potential V (x), and for a chosen energy value E, which we hope will
give us an energy eigenfunction.

If we specify the value of ψ and its derivative ψ′ in a starting point x0, the computer
can calculate ψ′′(x0) [using ψ(x0), E and V (x0)]. From ψ(x0), ψ′(x0) and ψ′′(x0), it can
then calculate the values of ψ and ψ′ at a neighbouring point x0 + ∆x. The error in this
calculation can (with an ideal computer) be made arbitrarily small if we choose a sufficiently
small increment ∆x. By repeating this process the computer can find a numerical solution
of the differential equation. In the following discussion we shall assume an ideal computer,
which works with a negligible numerical uncertainty.

Example: Particle in box (V = 0 for −l < x < l, infinite outside)

We know that the eigenfunctions of the box are either symmetric or antisymmetric. (See
page 7.)

(i) The computer will return a symmetric solution if we choose the origin as the
starting point and specify that ψ′(0) = 0 (ψ flat at the midpoint) and ψ(0) = 1 (arbitrary
normalization). In addition, we must give the computer an energy E. If we give it one of of
the energy eigenvalues

En = E1n
2, n = 1, 3, 5, · · · , E1 =

h̄2k2
1

2m
, k1 · 2l = π, (T3.22)

9Not compulsory.
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obtained in section 2.1 for symmetric eigenfunctions, the computer will reproduce the cor-
responding eigenfunction. Thus, if we choose e.g. the ground-state energy E1, the computer
will reproduce the cosine solution ψE1 = cos(πx/2l), which curves just fast enough to ap-
proach zero at the boundaries, x = ±l; cf the figure. 10

It is also interesting to examine what happens if we ask the computer to try with an energy
E which is lower than the ground-state energy E1, with the same starting values as above.
The computer will then return a “solution” ψE<E1 which curves too slowly, so that it still
has a positive value ψE<E1(l) > 0 at the boundary x = l, and thus does not satisfy the
boundary condition (continuity at x = ±l), as shown in the figure. Thus the computer finds
a “solution” for each E smaller than E1, but this “solution” is not an energy eigenfunction.

In the figure above we have also included a solution ψE>E1 . This solution curves faster
than the ground state (because E > E1), but not fast enough to satisfy the boundary
condition, as we see. By sketching some solutions of this kind, you will realize that none
of the symmetric “solutions” for E1 < E < E3 will satisfy the boundary conditions. This
illustrates the connection between the curvature properties of the “solutions” and energy
quantization.

(ii) In a similar manner, we can examine antisymmetric solutions, by giving the com-
puter the starting values ψ(0) = 0 and ψ′(0) = 1. If we then try with the energy E = E2

of the first excited state, the computer will retuen the energy eigenfunction ψE2(x), as shown
in the figure below. If we try with E less than E2, the curvature of the “solution” ψE<E2(x)
becomes too small to give an eigenfunction (see the figure).

We note that the reason that the first excited state ψE2 has a higher curvature than the
ground state is that is has a zero, as opposed to the ground state. (We are not counting the
zeros on the boundary.)

(iii) An alternative to the procedures (i) and (ii) above is to start at the boundary
on the left, with the values ψ(−l) = 0 and ψ′(−l) 6= 0. The diagram below shows two
“solutions”, one with E < E1, and one with E1 < E < E2.

10Note that with the origin at the midpoint, all the symmetric solutions go as cosine sulutions, while the
symmetric ones go as sines.
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Again we see that the curvature and hence the number of zeros increase with the en-
ergy. All these solutions with a zero at x = −l are of the type ψ = sin[k(x+ l)], where

k =
√

2mE/h̄2. An energy eigenfunction is obtained every time ψ equals zero on the bound-
ary on the right, that is, for kn · 2l = nπ. The eigenfunctions ψn = sin[kn(x+ l)] are of
course exactly the same as found before.

Square well

Similar numerical “experiments” can be made for the square well. We can let the computer
look for energy eigenfunctions by asking it to try for all energies in the interval 0 < E < V0.

The figure below illustrates what happens if we ask the computer to try with an energy
which is lower than the ground-state energy E1. Starting with ψ′(0) = 0 and ψ(0) = 1
for a symmetric solution (as under (i) above), the computer will than return a solution which
curves slower than than the ground state ψE1 in the classically allowed region, as shown in
the figure. This “solution” therefore becomes less steep than the ground state at the points
x = ±l.

Outside the well, the relative curvature outwards from the axis will be faster than for the

ground state (because κ =
√

2m(V0 − E)/h̄2 is larger than κ1). This “solution” therefore
cannot possibly approach the x axis smoothly (the way the ground state ψE1 does); it “takes
off” towards infinity, as illustrated in the figure. 11 For x > l, the “solution” is now a
linear combination of the acceptable function C exp(−κx) and the unacceptable function
D exp(κx). It will therefore approach infinity when x goes towards infinity. 12

11Note that the computer does not create any “kink” in the “solution” ψ. Because
ψ′′ = (2m/h̄2)[V (x)− E]ψ is finite, ψ′ and ψ become continuous and smooth at the points x = ±l.

12From such a figure, we can also understand why there always exists a bound ground state, no matter
how small the well is, as mentioned on page 12. For a tiny well, the cosine solution in the allowed region
only develops a very small slope, so that ψ is almost “flat” at x = ±l. But no matter how flat this

cosine is, we can always find an energy slightly below zero such that κ =
√

2m(V0 − E)/h̄2 becomes small

enough to make C exp(−κx) just as flat at x = l, giving a smooth joint. In such a case, the binding
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An alternative, as in (iii) above, is to start with a “solution” ψE<E1 going as (the accept-
able function) C exp(κx) for x < −l. In the figure, we have chosen to give this solution
the value 1 at x = −l, and the same has been done for the ground state ψE1 , which is also
shown in the diagram. At the point x = −l the slopes of the two curves then are

ψ′E<E1
(−l) = κ =

√
2m(V0 − E)/h̄2 and ψ′E1

(−l) = κ1 =
√

2m(V0 − E1)/h̄2,

and we note that with E < E1 we have κ > κ1. When the computer works its way
through the allowed region, from x = −l to x = l, we then note that ψE<E1 starts out
with a steeper slope than the ground state ψE1 . In addition, it curves slower towards the
axis than ψE1 in the entire allowed region. Therefore it arrives at x = l with a larger value
and a smaller slope than the ground state. For x > l, this solution curves faster outwards
than ψE1 . These are the reasons that this “solution” ψE<E1 does not “land” on the x axis
at all, but increases towards infinity, as illustrated in the figure.

To find an eigenfunction in addition to the ground state, we can repeat the above procedure,
but now with E > E1, which gives a faster curvature in the allowed region. The first eigen-
function which then appears is the one with one zero, at x = 0. This is the antisymmetric
first excited state.

3.2.f More complicated potentials

Based on the curvature arguments above we can now understand why the number of zeros
of energy eigenstates increases with the energy, not only for the box and the well above, but
also for more realistic potentials.

For such an asymmetric potential the energy eigenfunctions will not have a definite symmetry
(i.e. be symmetric or antisymmetric as above), but the following properties hold also here:

energy EB = h̄2κ2/2m becomes very small, and the exponential “tail” C exp(−κx) penetrates far into the
forbidden region on the right, and similarly on the left.
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• The energies of the bound states are quantized.

• The wave functions of the bound states are localized, in the sense that they approach
zero quickly at large distances.

• The number of bound states depends on the size of the well.

• The energies of the eigenfunctions increase with the number of zeros (nodes). The
ground state has no zero. The first excited state has one zero, and so on.

• For a symmetric potential, the ground state is symmetric, the first excited state is
antisymmetric, the second is symmetric, and so on.

A small exercise:
a. Let ψ(x) be a bound energy eigenstate of a square well, or of a harmonic
oscillator potential. Why must all the zeros of ψ(x) lie in the classically allowed
region? [Hint: Consider the behaviour of ψ(x) in the classically forbidden re-
gions.]
b. Does the above rule hold for all potentials V (x), that is, must the zeros of an
energy eigenfunction ψ(x) always lie in the classically allowed region(s)? [Hint:
Consider a symmetric potential for which the origin lies in a classically forbidden
region.]

3.3 Delta-function well [Hemmer 3.4]

We shall see that the δ-function potential,

V (x) = −βδ(x), (T3.23)

is a very simple but also a very special model potential. We may think of it as a square well
Vl(x), with a width 2l and depth V0 = β/2l, in the limit l→ 0 :

Here we have chosen to set V = 0 outside the well. We do this because it turns out that
the energy of the bound state, E = −EB, approaches a finite value in the limit where the
depth of the square well goes to infinity, i. e. in the limit l→ 0. (And then of course it
doesn’t make sense to measure the energy from the bottom of the well, as we are used to
do.)
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For the model potential on the left, it is very easy to solve the eigenvalue problem.
Outside the delta well, where V = 0, the eigenvalue equation takes the form

ψ′′ =
2m

h̄2 [V (x)− E]ψ =
2m

h̄2 [−E]ψ ≡ κ2ψ, (T3.24)

with

κ ≡ 1

h̄

√
2m(−E) =

1

h̄

√
2mEB

(
E = − h̄

2κ2

2m
= −EB

)
.

This equation has the solutions eκx and e−κx. Since only the last one is accceptable for
x > 0 and only the first one for x < 0, it follows from the continuity condition that the
solution is symmetric:

ψ =

{
Ce−κx for x > 0,
Ceκx for x < 0.

Here, we should not be surprised to find that the function has a cusp, corresponding to a
jump in the derivative, at x = 0. This is precisely what is required when the potential
contains a delta function: According to the discontinuity condition (T3.3), we have (with
α = −β )

ψ′(0+)− ψ′(0−) =
2m(−β)

h̄2 ψ(0). (T3.25)

For a given “strength” (β) of the well, this condition determines the quantity κ: The condi-
tion (T3.25) gives

C(−κ)− C(κ) = −2mβ

h̄2 C, or κ =
mβ

h̄2 .

This also determines the energy:

E = − h̄
2κ2

2m
= −mβ

2

2h̄2 . (T3.26)

Thus, the delta-function well is a somewhat peculiar potential model: It has one and only
one bound state (with a binding energy which is proportional to the square of the strength
parameter β).

We notice that this state is symmetric, as always for a symmetric potential. (You should
also note that the eigenvalue equation does not determine the normalization constant. As
usual, this is found using the normalization condition, which gives |C| =

√
κ.)

Why is there only one bound state? The answer follows when we consider the well with
finite width 2l and depth V0 = β/2l. When this well is made very deep and narrow, i.e.
approaches the δ well in the limit l→ 0, we see from (T3.25) that the curvature of the
cosine in the well region is is large enough to provide the necessary change ψ′1(l) − ψ′1(−l)
in the derivative (see the figure on the left).
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A first excited state ψ2 (with energy E2), on the other hand, would require a much larger
curvature in the well region. As seen in the figure on the right, the wave number k2 of the
solution sin k2x in the well region must be so large that it allows sin k2x to pass a maximum
before x = l, so that it can connect smoothly to Ce−κ2x for x > l. This requires that k2l
is larger than π/2. However, k2 is limited by the inequality

k2 =
1

h̄

√
2m(V0 − |E2|) <

1

h̄

√
2mV0,

so that

k2l <
1

h̄

√
2m

β

2l
l2 =

1

h̄

√
mβl,

which approaches zero in the limit l→ 0 (instead of being larger than π/2). As a con-
sequence, only the symmetric ground state survives when l is made sufficiently small, and
when it goes to zero, as it does in the delta potential.

3.4 One-dimensional harmonic oscillator

[Hemmer 3.5, Griffiths p 31, B&J p 170]

3.4.a Introduction: The simple harmonisc oscillator

The prototype of a harmonic oscillator is a point mass m attached to the end of a spring
with spring constant k, so that the force on the mass is proportional to the displacement
(here denoted by q) from the equilibrium position (q = 0). With this choice of origin, the
force and the potential are

F (q) = −kq and V (q) = 1
2
kq2,
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if we also choose to set V (0) equal to zero. According to classical mechanics this particle
will oscillate (if it isn’t at rest). Inserting the trial solution

q(t) = A′ cosωt+B′ sinωt = A cos(ωt− α)

into Newton’s second law, d2q/dt2 = F/m, we find that the angular frequency of the oscil-
lation is

ω =
√
k/m.

This means that we can replace the spring constant k with mω2 in the potential V (q):

V (q) = 1
2
mω2q2.

According to classical mechanics, the energy of the particle can have any non-negative value
E. For a given E, it will oscillate between the classical turning points q = ±A (where A
is given by E = 1

2
mω2A2).

In the quantum-mechanical treatment of this system, we shall as usual start by finding
all the energy eigenfunctions and the corresponding eigenvalues. It then turns out that the
oscillator has only bound states, and that the energy is quantized. We shall see how all the
energy eigenvalues and the corresponding eigenfunctions can be found.

We start by writing the time-dependent Schrödinger equation on dimensionless form,
as

d2ψ(x)

dx2
+ (ε− x2)ψ(x) = 0. (T3.27)

Here we have introduced the dimensionless variables x and ε for for respectively the position
and the energy:

x ≡ q√
h̄/mω

and ε ≡ E
1
2
h̄ω

. (T3.28)

We shall find the solutions of this differential equation (i.e., the energy eigenfunctions) and
the corresponding energies (ε) using the so-called series expansion method.

In this method we make use of the fact that any energy eigenfunction can be expanded
in terms of a Taylor series in powers of the dimensionless variable x. The coefficients in
this expansion will be determined when we require that the expansion satisfies the energy
eigenvalue equation (T3.23) above.

3.4.b Illustration of the series expansion method

Let us illustrate how this method works by applying it on a well-known function, the expo-
nential function y(x) = exp(x), which has the Taylor expansion

y(x) = ex = 1 + x+ x2/2! + ... =
∞∑
n=0

xn

n!
.

This function satisfies the differential equation

y′ = y,

as you can readily check. We shall now try to solve this equation using the series expansion
method. We start by assuming that y(x) can be expanded in an infinite power series,

y =
∞∑
n=0

cnx
s+n = c0x

s + c1x
s+1 + · · · .
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Here we assume that c0 6= 0, and we must first find the lowest power, xs, where we now
pretend that s is unknown. Inserting into the differential equation (y′ − y = 0) the above
sum and the corresponding expression for its derivative,

y′ =
∞∑
n=0

cn(s+ n)xs+n−1 = c0 sx
s−1 +

∞∑
n=1

cn(s+ n)xs+n−1

= c0 sx
s−1 +

∞∑
n=0

cn+1(s+ n+ 1)xs+n,

we get the following equation:

c0 sx
s−1 +

∞∑
n=0

[(s+ n+ 1)cn+1 − cn]xs+n = 0.

This equation is satisfied for all x only if the coefficients in front of all the powers of x are
equal to zero. Since c0 is different from zero (by definition), we must thus require that

• s = 0, which means that the Taylor expansion starts with c0x
0 = c0, and that

• cn+1 =
cn

n+ s+ 1
=

cn
n+ 1

.

The last formula is called a recursion relation, and implies that all the coefficients can be
expressed in terms of c0:

c1 =
c0

1
, c2 =

c1

2
=

c0

1 · 2
, c3 =

c2

3
=
c0

3!
, etc.

Thus the series expansion is

y =
∞∑
n=0

cnx
n = c0

∞∑
n=0

xn

n!
.

Here we recognize the sum as the Taylor expansion of exp(x).

3.4.c Series expansion methed applied to the oscillator eigenvalue
equation

For the oscillator, we can in principle apply the same procedure. From the exercises, you
probably remember that two of the solutions of the eigenvalue equation are

ψ0 = C0 e
−mωq2/2h̄ = C0 e

−x2/2 and ψ1 = C1 q e
−mωq2/2h̄ = C ′1 x e

−x2/2.

It is the tempting to “remove” a factor exp(−x2/2) from all the solutions, by writing

ψ(x) = v(x)e−x
2/2.

We do this hoping that the resulting series for the function v(x) will be simpler (maybe even
finite, as for the two solutions above). We find this series by applying the series expansion
method to the diffential equation for v(x), which is

v′′ − 2xv′ + (ε− 1)v = 0.
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[Verify that this equation follows when you insert ψ(x) = v(x) exp(−x2/2) into the differ-
ential eqyuation (T3.23) for ψ(x).] We now insert the infinite series 13

v(x) =
∞∑
k=0

akx
2 , v′ =

∑
k=1

kakx
k−1,

and
v′′ =

∑
k=2

k(k − 1)akx
k−2 =

∑
k=0

(k + 2)(k + 1)ak+2x
k,

into the above equation for v(x) and get

∞∑
k=0

[(k + 2)(k + 1)ak+2 − (2k + 1− ε)ak]xk = 0.

This equation is satisfied (for all x) only if all the parentheses [· · ·] are equal to zero. This
leads to the recursion relation

ak+2 = ak
2k + 1− ε

(k + 1)(k + 2)
, k = 0, 1, 2, · · · . (T3.29)

By repeated use of this relation, we can express the coefficients a2, a4 etc in terms of a0, —
and a3, a5, etc in terms of a1. The “solution” for v(x) then is

v(x) = a0

[
1 +

1− ε
2!

x2 +
(1− ε)(5− ε)

4!
x4 + · · ·

]

+a1

[
x+

3− ε
3!

x3 +
(3− ε)(7− ε)

5!
x5 + · · ·

]
,

where you should now be able to write down the next term for both of the two series.
If these two (supposedly infinite) series do not terminate, we see from the recursion

relation that the ratio between neighbouring coefficients will go as

ak+2

ak
' 2

k

for large k. As shown in Hemmer, this is the same ratio as in the expansion of xpex
2
, where

xp is an arbitrary power of x. This means that ψ(x) = v(x) exp(−x2/2) will for large
|x| behave as exp(+x2/2) multiplied by some power of x. Such a function will approach
infinity in the limits x→ ±∞, and that is not allowed for an eigenfunction. The only
way to avoid this unacceptable behaviour is if the series terminate, so that v(x) becomes
a polynomial. On the other hand, when both series terminate, ψ(x) = v(x) exp(−x2/2)
becomes a normalizable function. (This is related to the fact that the energy spectrum is
discrete, as we shall see.)

Let us investigate then under what conditions the series terminate. We start by con-
sidering the case in which ε is not an odd integer, ε 6= 1, 3, 5, 7, · · · . Then neither of the
two series terminate. In order to avoid a diverging solution, we must then set a0 = a1 = 0,
which gives v(x) ≡ 0, so that ψ(x) becomes the trivial “null” solution. The conclusion

13Here, we are simply assuming that the lowest power in the Taylor series for v(x) is a constant, a0, as is
the case for the ground state.
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is that the differential equation does not have any acceptable solution (and that Ĥ does
not have any eigenfunction) for ε 6= 1, 3, 5, 7, · · · . We must therefore look more closely into
what happens when ε is an odd integer (equal to 1, 3, 5, 7, etc):

For
ε = 1, 5, 9, · · · = 2n+ 1 (with n = 0, 2, 4, · · ·),

we see that the first of the two series terminates (but not the second one). To get an
acceptable eigenfunction, we must then get rid of the second series by setting a1 = 0. We
note that this makes v(x) a polynomial of degree n. For ε = 5, e.g., which corresponds to
n = 2, we see that the polynomial is of degree 2, with only even powers of x. Then also the
eigenfunction ψn(x) = vn(x) exp(−x2/2) is an even function of x (symmetric).

For
ε = 3, 7, 11, · · · = 2n+ 1 (with n = 1, 3, 5, · · ·),

it is the second series that terminates, and we have to set a0 = 0. Then v(x) becomes a
polynomial with only odd powers of x, and ψn(x) = vn(x) exp(−x2/2) is an antisymmetric
eigenfunction.

In both cases, the energy eigenvalues are given by

En = 1
2
h̄ω · ε = (n+ 1

2
)h̄ω, n = 0, 1, 2, · · · . (T3.30)

With these results we have finally proved the formula for the (non-degenerate) energy spec-
trum of the harmonic oscillator, and also the symmetry properties of the wave functions,
which were announced early in this course.

It is now a simple matter to find the polynomials vn(x) by inserting ε = 1, 3, 5 etc in
the formula above. It is customary to normalize these polynomials vn(x) in such a way that
the highest power is 2nxn. These polynomials are known as the Hermite polynomials,
Hn(x). In section 3.5.3 in Hemmer, and in section 4.7 in B&J, you can find a number of
useful formulae for the Hermite polynomials. One of these formaulae is∫ ∞

−∞
H2
n(x)e−x

2

dx = 2nn!
√
π.

This can be used to show that the normalized energy eigenfunctions, expressed in terms of
the position variable q, are

ψn(q) =
(
mω

πh̄

)1/4 1√
2nn!

e−mωq
2/2h̄Hn

 q√
h̄/mω

, (T3.31)

where

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,
(
x = q

√
mω/h̄

)
H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12, etc.
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A few simple exercises:

3.1 Show that the next polynomial is H5(x) = 32 x5 − 160x3 + 120x.
3.2 What are the expectation values 〈x 〉ψn

for the eigenfunctions ψn(x)?
3.3 What happens with the energy levels if we increase the particle mass by a
factor 4?
3.4 What happens with the energy levels if we increase the spring constant k in
the potential V (x) = 1

2
kx2, that is, if we make the potential more “narrow”?

3.5 It can be shown that the non-hermitian operators

â =

√
mω

2h̄
q +

ip̂√
2mh̄ω

=

√
mω

2h̄
(q +

h̄

mω

∂

∂q
) og â† =

√
mω

2h̄
(q − h̄

mω

∂

∂q
)

have the properties

âψn(q) =
√
nψn−1(q) og â†ψn(q) =

√
n+ 1ψn+1(q).

Check that these operators act as they should for n = 0, that is, that they give
âψ0 = 0 and â†ψ0 = ψ1.

The figure shows the first four energy eigenfunctions. The hatched areas indicate where
the eigenfunctions “penetrate” into the respective classically forbidden regions (beyond the
classical turning points). Note also that ψ′′/ψ changes sign at the turning points: Between
the turning points the eigenfunctions curve towards the x axis. In the “forbidden” regions
they curve away from the axis. This is in accordance with the eigenvalue equation

ψ′′/ψ = x2 − ε = x2 − 2n− 1,

which tells us that the turning points occur for

q
√
mω/h̄ = x = ±

√
ε = ±

√
2n+ 1.

In Hemmer, or in B&J, you can as mentioned study the wonderful properties of the
Hermite polynomials more closely. You can also find a section on the comparison with the
classical harmonic oscillator:



TFY4215/FY1006 — Lecture notes 3 27

3.4.d Comparison with the classical harmonic oscillator

In hemmer, you can observe that there is a certain relationship between the probability
density for an energy eigenfunction ψn(q) and the classical probability density for a particle
that oscillates back and forth with the energy En. The classical probability density is largest
near the classical turning points, where the particle’s velocity is lowest. For large quantum
numbers, the quantum mechanical probability density of course has a large number of zeros,
but apart from these local variations, we notice that the local maxima are largest close to
the turning points.

At the same time, there is a fundamental difference between the classical oscillatory
behavour and the quantum-mechanical behaviour of the probability density for a stationary
state. The latter is really stationary; it does not move, contrary to the classical motion of
the particle, which we are used to observe macroscopically. Thus the classical motion must
correspond to a non-stationary solution of the time-dependent Schrödinger equation for the
oscillator. Such a solution can be found p 59 in Hmmer:

Suppose that a harmonic oscillator (a particle with mass m in the potential V (q) =
1
2
mω2q2) is prepared in the initial state

Ψ(q, 0) =
(
mω

πh̄

)1/4

e−mω(q−q0)2/2h̄,

at t = 0, which is a wave function with the same form as the ground state, but centered
at the position q0 instead of the origin. As we have seen in the exercises, the expectation
values of the position and the momentum of this initial state are 〈 q 〉0 = q0 and 〈 p 〉0 = 0.
Furthermore, the uncertainty product is “minimal”:

∆q =

√
h̄

2mω
, ∆p =

√
h̄mω

2
, ∆q∆p = 1

2
h̄.

The solution of the Schrödinger equation for t > 0 can always be written as a superposition
of stationary states for the oscillator,

Ψ(q, t) =
∑
n

cnψn(q)e−iEnt/h̄.

By setting t = 0 in this expansion formula we see (cf Lecture notes 2) that the coefficient
cn is the projection of the initial state Ψ(q, 0) onto the eigenstate ψn(q):

cn = 〈ψn,Ψ(0) 〉 ≡
∫ ∞
−∞

ψ∗n (q)Ψ(q, 0)dq.

By calculating these coefficients and inserting them into the expansion formula, it is possible
to find an explicit formula for the time-dependent wave function. This formula is not very
transparent, but the resulting formula for the probability density is very simple:

|Ψ(q, t)|2 =
(
mω

πh̄

)1/2

e−mω(q−q0 cosωt)2/h̄.

We see that this has the same Gaussian form as the probability density of the initial state,
only centered at the point q0 cosωt, which thus is the expectation value of the position at
the time t:

〈 q 〉t = q0 cosωt.
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Furthermore, the width of the probability distribution stays constant, so that the uncertainty
∆q keeps the value it had at t = 0. The same turns out to be the case for the uncertainty
∆p, and hence also for the uncertainty product ∆q∆p, which stays “minimal” the whole time.
Thus, in this particular state we have a wave packet oscillating back and forth in a “classical”
manner, with constant “width”. Admittedly, the position is not quite sharp, and neither is
the energy. However, if we choose macroscopic values for the amplitude q0 and/or the mass
m, then we find that the relative uncertainties, ∆q/q0 and ∆E/ 〈E 〉, become negligible.
Thus, in the macroscopic limit the classical description of such an oscillation agrees with the
quantum-mecnical one. This means that classical mechanics can be regarded as a limiting
case of quantum mechanics.

3.4.e Examples

In Nature is there is an abundance of systems for which small deviations from equilibrium
can be considered as harmonic oscillations. As an example, we may consider a particle
moving in a one-dimensional potential V (q), with a stable equilibrium at the position q0. If
we expand V (q) in a Taylor series around the value q0, then the derivative is equal to zero
at the equilibrium position [V ′(q0) = 0], so that

V (q) = V (q0) + (q − q0)V ′(q0) +
1

2!
(q − q0)2V ′′(q0) + · · · ,

= V (q0) + 1
2
k(q − q0)2 + · · · [with k ≡ V ′′(q0)].

As indicated in the figure on the next page, V (q) will then be approximately harmonic
(parabolic) for small displacements from the equilibrium position; 14

V (q) ≈ V (q0) + 1
2
k(q − q0)2 ≡ Vh(q) (for small |q − q0|).

In this approximation, the energy levels become equidistant,

Eh
n = V (q0) + h̄ω(n+ 1

2
), n = 0, 1, 2, · · · , ω =

√
k/m =

√
V ′′(q0)/m,

and the energy eigenfunctions are the same as those found in section 3.4.c above, only
displaced a distance q0. As an example, the ground state in this approximation is

ψh
0 (q) =

(
mω

πh̄

)1/4

e−mω(q−q0)2/2h̄.

14We suppose that V ′′(q0) > 0.
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We can expect the “harmonic” results Eh
n (for the energy) and ψh

n(q) (for the corresponding
energy eigenfunction) to be fairly close to the exact results En and ψn(q), provided that
the parabola Vh(q) does not deviate too much from the real potential V (q) in the region
where the probability density |ψn(q)|2 differs significantly from zero; that is, the particle
must experience that the force is by and large harmonic.

The “real” potential V (q) in the figure is meant to be a model of the potential energy that
can be associated with the vibrational degree of freedom for a two-atomic molecule. (Then
q is the distance between the two nuclei, and q0 is the equilibrium distance.) For small and
decreasing q, we see that the potential increases faster than the parabola. The molecule
resists being compressed, because this “causes the two electronic clouds to overlap”.

For q > q0, we see that the molecule also strives against being “torn apart”, but here
we observe that the potential does not increase as fast with the distance as V h(q). While
the force according to the harmonic approximation increases as |F | = dV h/dq = mω2q, we
see that the real force pretty soon starts to decrease. For sufficiently large distances it in
fact approaches zero, in such a way that it costs a finite amount of energy D0 = V (∞)−E0

to tear the molecule apart (when it initially is in the ground state). This is the so-called
dissociation energy.

For the lowest values of n, for which V (q) and Vh(q) are almost overlapping between the
turning points, the harmonic approximation will be good, and the energy levels will be almost
equidistant. For higher n, for which the potential V (q) is more “spacious” than the parabolic
Vh(q), the levels will be more closely spaced than according to the harmonic approximation,
as indicated in the figure. This can also be understood using curvature arguments: With
more space at disposal, the wave function ψ(q) can have more zeros (higher n) for a given
energy.

The distance between neigbouring vibrational energy levels for two-atomic gases like e.g.
O2 typically is of the order of 0.1 − 0.2 eV, which is much larger than the energies needed
to excite the rotational degree of freedom (10−4 − 10−3 eV). In statistical physics one learns
that the probability of finding the molecule excited e.g. to the first vibrational level (n = 1)
is negligible when kBT << h̄ω, that is, when the temperature T is much lower than

h̄ω

kB
∼ 0.1 eV

8.6 · 10−5 eV/K
∼ 103 K.
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By measuring emission lines from a hot gas we find one spectral line for each transition
between neighbouring energy levels. This is because there is the so-called selection rule
∆n = ±1 for transitions between vibrational states. A measurement of the line spectrum
thus gives us the energy differences beteen all neighbouring levels. These spectra are in
reality a little bit more complicated by the fact that the emitted photon carries away an
angular momentum ±h̄. This means that the change of vibrational energy is accompanied
by a change of the angular momentum, and hence also of the rotational energy. Thus what
we are dealing with really are vibrational-rotational spectra.

For molecules with more than two atoms, the motion becomes more complicated. The
molecule can be sujected to stretching, bending, torsion, etc. However, all such complicated
motions can be analyzed in terms of so-called normal modes, which can be treated as a
set of independent oscillators.

The same can be said about solids like a crystal. Here, each normal mode corresponds
to a standing wave with a certain wavelength an a certain frequency. For the mode with the
highest frequencies (shortest wavelengths), only a small number of atoms are oscillating “in
step”; for long wavelengths large portions of the crystal are oscillating “in phase”.

Longitudinal (a) and transverse (b) modes with wavelength 8a in a one-dimensional
mono-atomic crystal. The arrows show the displecements from the equilibrium po-
sistions.

Here too the normal modes are defined in such a way that they can be treated as a set of
independent harmonic oscillators. But the number of modes is so large that the frequency
spectrum will be practically continuous. (Cf the discussion of black-body radiation in Lecture
notes 1.)

In some cases, e.g. for sound waves, we can treat such oscillations classically. In other
cases, e.g. for a crystal which has been cooled down to a very low temperature (T

>∼ 0), the
quantum number of each “oscillator” will be small; perhaps even zero, so that only a few of
the oscillators are excited. We must then treat the system quantum mechanically, and take
into account that energy is exchanged in the form of quanta h̄ω. So here we are dealing with
quantized sound waves.

A similar set of standing waves occurs when we consider electromagnetic waves in a cavity.
In some cases (e.g. in the microwave oven), these waves can be treated classically. Each
standing wave is then treated with the mathematics of a classical harmonic oscillator. But
certain properties of cavity radiation can only be understood if these oscillators are quantized,
as Planck and Einstein discovered well over a hundred years ago. It is the quantization
of the electromagnetic modes of radiation which leads to the photon description of the
electromagnetic field. In this description, a mode of frequency ω and energy En = h̄ω(n+ 1

2
)

contains n photons with energy h̄ω (in addition to the “zero-point energy” 1
2
h̄ω).

In a similar way, the quantization of the crystal’ “oscillators” leads to the concept of
phonons (sound quanta), which are analoguous to the photons.
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Exercise:

An electron is moving in the potential

V (q) = V0

[
x4

4
− 2x3

3
− x2

2
+ 2x+

19

12

]
, where x ≡ q

5a0

and V0 =
6h̄2

mea2
0

.

Here, a0 is the Bohr radius, so that V0 = 12 · h̄2/(2mea
2
0) = 12 · 13.6 eV = 12

Rydberg. The potential has a minimum for x = x0 = −1 (i.e. for q = q0 =
−5a0).
a. Check this by calculating dV/dq and d2V/dq2 at the minimum.
b. Show that the energy of the ground state is E0 ≈ V0/10, if you apply the
“harmonic approximation” (see the figure).
c. Add the “energy line” E0 to the diagram. Do you think that the result for E0

is reasonably accurate compared to the exact value of the ground-state energy
for the potential V ?

3.5 Free particle. Wave packets

(Griffiths)

3.5.a Stationary states for a free particle

In classical mechanics the free particle (experiencing zero force) is the simplest thing we
can imagine: cf Newton’s 1. law. Quantum mechanically, however, even the free particle
represents a challenge, as pointed out by Griffiths on pages 44–50.

We consider a free particle in one dimension, corresponding to V (x) = 0. For this case
it is very easy to solve the time-independent Schrödinger equation,

Ĥ ψ(x) = E ψ(x),

which takes the form

d2ψ

dx2
= −k2 ψ, with k ≡ 1

h̄

√
2mE.
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As solutions of this equation we may use sin kx and cos kx (which we remember from the
discussion of the one-dimensional box, also called the infinite potential well), but here we
shall instead use exp(±ikx).

These solutions also emerge if we start out with the harmonic waves

ψp(x) = (2πh̄)−1/2 eipx/h̄, (T3.32)

which are eigenfunctions of the momentum operator p̂x: Since

p̂xψp(x) = pψp(x),

we have

Ĥ ψp(x) =
p̂2
x

2m
ψp(x) =

p2

2m
ψp(x).

Thus, the momentum eigenfunction ψp(x) also is an energy eigenfunction (for the free par-
ticle) with energy E, if we choose either of the two p values

p = ±
√

2mE = ±h̄k.

So, no matter how we start out, we may conclude that for the free particle in one
dimension there are two unbound energy eigenstates for each energy E > 0 (degeneracy
2). For E = 0, we have only one solution, ψ = (2πh̄)−1/2 = constant. Thus the energy
spectrum is E ∈ [0,∞). This means that the complete set ψp(x) of momentum eigenstates

also constitutes a complete set of egenstates of the free-particle Hamiltonian Ĥ = p̂2
x/2m.

The corresponding stationary solutions,

Ψp(x, t) = ψp(x) e−i(p
2/2m)t/h̄, (E = p2/2m), (T3.33)

is also a complete set.

3.5.b Non-stationary states of a free particle

Since the momentum eigenstates ψp(x) require delta-function normalization (see, e,g, 2.4.4
in Hemmer), none of the stationary states Ψp(x, t) above can represent a physically realizable
state, stricly speaking. A pysical state has to be localized (quadratically integrable), and
hence can not be stationary for a free particle. The time-dependent wave function Ψ(x, t) of
such a physical state can be found once the initial state Ψ(x, 0) is specified, in the following
way:

(i) Ψ(x, t) may always be written as a superposition of the stationary states Ψp(x, t)
(because this set is complete):

Ψ(x, t) =
∫ ∞
−∞

φ(p) Ψp(x, t)dp. (T3.34)

[Here, the function φ(p) plays the role as expansion coefficient.]
(ii) Setting t = 0 we have

Ψ(x, 0) =
∫ ∞
−∞

φ(p)ψp(x)dp.
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This means that φ(p) is the projection of the initial state Ψ(x, 0) on ψp(x),

φ(p) = 〈ψp,Ψ(0) 〉 ≡
∫ ∞
−∞

ψ∗p (x)Ψ(x, 0)dx,

and this function may be calculated when Ψ(x, 0) is specified.
(iii) Inserting the resulting coefficient function φ(p) into the integral for Ψ(x, t) and

calculating this integral, we will find how Ψ(x, t) behaves as a function of t. This method
will be applied in an exercise, to study the behaviour of free-particle wave packets.

3.5.c Phase velocity. Dispersion

Even if we do not specify Ψ(x, 0), it is possible to study some general properties of the
free-particle wave function

Ψ(x, t) =
∫ ∞
−∞

φ(p) Ψp(x, t) dp. (T3.35)

First, we note that Ψp(x, t) has the form

ei(px−Et)/h̄ = ei(kx−ωt),

with

k =
p

h̄
and ω =

E

h̄
=
h̄k2

2m
. (T3.36)

Digression: Electromagnetic waves in vacuum

Let us digress and for a moment consider electromagnetic waves in vacuum (ω = c|k|).
A monochromatic wave propagating in the x direction then is described essentially by the
harmonic wave function

ei(kx−ωt) = eik(x−ct),

or rather by the real part of this, cos k(x− ct). The wave crests move with the velocity

vf =
ω

k
= c.

This so-called phase velocity is independent of the wave number k; in vacuum waves with
different wavelengths all move with the same (phase) velocity c:

By superposing such plane harmonic waves with different wavelengths, we can make a wave
packet,

f(x, t) =
∫ ∞
−∞

φ(k) ei(kx−ωt)dk =
∫ ∞
−∞

φ(k) eik(x−ct)dk. (T3.37)
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Since each component wave in this superposition is moving with the same velocity c, we
realize that the resulting sum (the integral) of these component waves will also move with
the velocity c and with unchanged form.

This can also be verified using the formula above. If we name the wave function at
t = 0,

f(x, 0) =
∫ ∞
−∞

φ(k) eikxdk

by g(x), we see from the right-hand side of (T3.37) that

f(x, t) = g(x− ct) :

This is illustrated in the figure, where the diagram on the left shows the wave function at
t = 0. In the figure on the right, at time t, we find the same wave form, shifted to the right
by the amount ct.

Thus, a plane electromagnetic wave packet propagates with unchanged form in vacuum.
We note that this is because the phase velocity vf = ω/k = c in vacuum is independent of
k.

In an optical fiber, on the other hand, the phase velocity depends slightly on the wave-
length. The harmonic component waves then propagate with slightly different velocities. As
a result, a wave packet will change form during propagation. For example, if we start with
a sharp pulse (corresponding to a broad band of wavelengths), the pulse will typically be
spread out during propagation. This is called dispersion, and this is the reason for calling

ω = ω(k)

the dispersion relation for the medium in question.

3.5.d Group velocity

After this digression, let us see what we can learn from the dispersion relation

ω =
h̄

2m
k2

for the harmonic free-particle wave (the de Broglie wave)

Ψp(x, t) = ψp(x)e−i(p
2/2m)t/h̄ ∝ ei(kx−ωt).

We note that the phase velocity of this harmonic wave,

vf =
ω

k
=
h̄k

2m
=

p

2m
,
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comes out as the classical velocity p/m divided by 2. There is no reason to worry about this
result. Neither the phase velocity nor the phase itself of the de Broglie wave are observable.
And the same can be said about the phases of all other qauntum-mechanical wave functions
that we encounter. In this respect, there is an essential difference between the quantum-
mechanical wave functions and classical waves like e.g. an ocean wave.

We also note that the phase velocity of the de Broglie wave depends strongly on the wave
number (∝ k). In order to find out what this means, we can make a wave packet

Ψ(x, t) =
∫ ∞
−∞

φ(k) ei(kx−ωt)dk, ω = ω(k), (T3.38)

where we consider a fairly sharp distribution φ(k) of wave numbers, around a central value
k0. This corresponds to an equally sharp momentum distribution around a central value
p0 = h̄k0 :

Thus we suppose that the width (∆k) of this distribution is relatively small. It is the relevant
to consider the Taylor expansion of ω(k) around the central value k0,

ω(k) = ω(k0) + (k − k0)
dω

dk

∣∣∣∣∣
k0

+
1

2!
(k − k0)2 d

2ω

dk2

∣∣∣∣∣
k0

.

In this case, there are no higher-order terms in the expansion, because ω goes as k2. We find

ω(k0) =
h̄

2m
k2

0 ≡ ω0,

dω

dk

∣∣∣∣∣
k0

=
h̄

m
k0 ≡ vg,

d2ω

dk2

∣∣∣∣∣
k0

=
h̄

m
.

With this notation the exact expansion of ω(k) around k0 is

ω(k) = ω0 + vg(k − k0) +
h̄

2m
(k − k0)2. (T3.39)

Since we consider a rather narrow distribution φ(k), the last term in this expression will be
relatively small. Let us therefore neglect this term and try to use the approximation

ω(k) ≈ ω0 + vg(k − k0). (T3.40)



TFY4215/FY1006 — Lecture notes 3 36

Inserting this into the integral for Ψ(x, t), and moving the factors which are independent of
the integration variable k outside the integral, we find that

Ψ(x, t) ≈
∫ ∞
−∞

φ(k) ei(kx−[ω0+vg(k−k0)]t)dk

= e−iω0teik0vgt
∫ ∞
−∞

φ(k) eik(x−vgt)dk. (T3.41)

For t = 0 this simplifies to

Ψ(x, 0) =
∫ ∞
−∞

φ(k) eikxdk ≡ g(x).

Inspired by the digression above, we denote the last integral by g(x). Comparing with the
last integral in (T3.41), we then see that the latter is g(x− vgt) = Ψ(x− vgt, 0). Thus,
essentially without doing any explicit calculations, we have found that the approximation
ω ≈ ω0 + vg(k − k0) leads to the result

Ψ(x, t) ≈ e−it(ω0−k0vg) Ψ(x− vgt, 0). (T3.42)

Apart from the irrelevant phase factor, we see that the wave packet has the same form as for
t = 0; it has only moved a distance vgt during the time t. This means that the quantity
vg ≡ dω/dk|k0 introduced above is the velocity of the wave packet or wave “group”. Thus
we may state the following rule:

A wave packet or wave group with a narrow distribution φ(k)
of wave numbers centered around k0 will move with the group
velocity

vg =
dω

dk

∣∣∣∣∣
k0

.

(T3.43)

In the case at hand, with the dispersion relation ω = h̄k2/2m, we find the group velocity

vg =
h̄k0

m
. (T3.44)

We note that this is the classical velocity of a particle with momentum p0 = h̄k0, which
corresponds to the central Fourier component in the wave packet.

We also note that the neglection of the quadratic term in the expansion

ω(k) = ω(k0) + (k − k0)
dω

dk

∣∣∣∣∣
k0

+
1

2!
(k − k2

0)
d2ω

dk2

∣∣∣∣∣
k0

corresponds to the neglection of the dispersion of the wave packet. If the quadratic term is
included (corresponding here to the use of the exact dispersion relation ω(k) = h̄k2/2m),
one finds that the wave packet changes form during the propagation.

If one chooses a very narrow distribution φ(k) (small ∆px = h̄∆k), corresponding to a
very long wave packet (large ∆x), then it will take a long time before the dispersion shows
up.

In the opposite case, if one insists on a very short wave packet in x-space (small ∆x),
then this requires a very broad distribution of wave numbers (large ∆px = h̄∆k). Then the
dispersion will be much stronger, and it will show up very fast.
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3.6 Scattering in one dimension

[Hemmer 3.6, B&J 4.2–4.4]

3.6.a What is scattering in one dimension?

Scattering is very often a three-dimensional process: A grain of dust scatters an incoming
ray of light in all directions. And when a bat sends a sound wave against an insect, the
scattered sound wave spreads over all directions, happily also backwards towards the bat.
The angular distribution of the scattered wave depends in general on the form of the object,
and also on the wavelength.

Scattering is used for structural investigations in many fields, on objects varying in size
from macroscopic bodies, via microscopic structures, and all the way down to sub-atomic
particles. As an example, the structure of a molecule can be studied by bombarding it
with electrons as projectiles. The angular distribution of scattered electrons then gives us
information on the structure of the molecule (the target).

Such a process must be treated quantum mechanically. One then employes a wave func-
tion consisting of a plane wave representing the incoming particles and a spherical scattered
wave representing the scattered particles. Such wave functions are called scattering wave
functions. The angular distribution of the scattered wave will depend on the wavelength
(and hence the energy) of the projectiles.

What is scattering in one dimension? As an example, we may consider a plane sound
wave incident (perpendicularly) on a plane wall. Another example is light incident on a
window. Then for each photon, there are only two possible outcomes: Either transmission
straight through or reflection. (We are neglecting absorption here.) This process can be
treated as a one-dimensional problem, where incoming, transmitted and reflected photons
are represented by plane waves propagating either forwards or backwards. Correspondingly,
a beam of electrons incident perpendicularly on a metal surface will experience a potential
V (x) depending only on one variable. Such a process may be treated by the use of a wave
function which depends only on x, and thus we have a one-dimensional scattering process.

3.6.b Scattering calculation based on energy eigenfunctions

We start by considering some general properties af a scattering process where a particle
incident from the left (region I in the figure, where V (x) = 0), meets a region II (0 <
x < a) where the potential is unspecified (and where the force Fx = dV (x)/dx differs
from zero), and then is either reflected back to region I or transmitted to region II (x >
a), where V (x) = V0. Here, V0 is ether positive, negative or equal to zero. We shall
consider potentials which are also constant in region II, so that we are dealing with piecewise
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constant potentials. The simplest way to deal with such scattering processes is to use energy
eigenfunctions ψE(x), which correspond to stationary solutions ΨE(x, t) = ψE(x)e−iEt/h̄

of the Schrödinger equation. If we limit ourselves to consider particle energies E larger
than max(0, V0), we may write down wave numbers and general solutions of the eigenvalue
equation ĤψE = EψE for regions I and III as follows:

I: x < 0 II: 0 < x < a III: x > a

ψI = Aeikx +Be−ikx ψII depends on ψIII = Ceik
′x +De−ik

′x

the potential

k =
1

h̄

√
2mE k′ =

1

h̄

√
2m(E − V0)(

E =
h̄2k2

2m

) (
E = V0 +

(h̄k′)2

2m

)

(T3.45)

With an energy E larger than max(0, V0), we have two independent energy eigenfunctions
for this potential (degeneracy 2). This gives us a certain freedom in the choice of the form of
this wave function. We use this freedom to choose to set the coefficient D equal to zero. The
reason is that the remaining term Ceik

′x in region III, combined with the time factor e−iEt/h̄,
describes particles moving to the right, i.e., transmitted particles with a positive group
velocity (cf the discussion of the group velocity above). The discarded term De−ik

′xe−iEt/h̄

would correspond to particles with a negative group velocity in region III, and such particles
should not occur in this problem. To the right of the point x = a there is no force which
can cause particles to turn around and come back towards the left.

Thus, we have a picture where particles are sent in from the left (represented by the
incoming wave Aeikx ≡ ψi). Some of these (represented by the transmitted wave Ceik

′x ≡ ψt)
are transmitted to the right, while others (represented by the reflected wave Be−ikx ≡ ψr)
are reflected back to the left. We may call the condition D = 0 a boundary condition.
Note that this condition gives us an asymmetric wave function (also if the potential V (x)
should happen to be symmetric).

Current densities

In order to find the probabilities of reflection and transmission, we use the formula

j(x) = <e

[
ψ∗ h̄

im

∂ψ

∂x

]
(T3.46)

to calculate the current densities in regions I and III. It is easy to find the transmitted
current density jt = jIII , since the wave function in this region is simply ψIII = Ceik

′x :

jt = jIII = <e

[
C∗e−ik′x h̄

im
C(ik′)eik

′x

]
= |C|2 h̄k

′

m
= |ψIII |2v′. (T3.47)

(Note that the current density comes out as the product of the density and the group
velocity.)
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Before going on to calculate the current in region I, we note that the incoming wave
ψi = Aeikx and the reflected wave ψr = Be−ikx, if either of them were alone in region I,
would give current densities which we may denote by

ji = |A|2 h̄k
m

and jr = |B|2 h̄(−k)

m
, (T3.48)

respectively. We note that the latter is negative, directed to the left. When we do the
calculation properly, taking into account that both these waves are present in region I, we
find that the current density in region I is the algebraic sum of ji and jr:

jI = <e

[(
A∗e−ikx +B∗eikx

) h̄k
m

(
Aeikx −Be−ikx

)]

= |A|2 h̄k
m

+ |B|2 h̄(−k)

m
+ <e

[
AB∗e2ikx − A∗Be−2ikx

] h̄k
m

= ji + jr = ji − |jr|. (T3.49)

Here, we have used that
<e[z − z∗] = <e[2i=m(z)] = 0.

We shall see below that
jI = jIII(= jII), (T3.50)

and that the current density is in general independent of x for a stationary state in a one-
dimensional potential V (x), which is the case here. Therefore, (T3.49) may also be written
as

ji = |jr|+ jI = |jr|+ jt. (T3.51)

This relation tells us that the probability is conserved; the incoming current is split in
two, a reflected current (moving towards the left) and a transmitted current (moving to the
right). The probabilities of reflection and transmission then must be

R =
|jr|
ji

and T =
jt
ji
. (T3.52)

Thus the relation
R + T = 1 (T3.53)

is an expression of probability conservation.
This indicates that the key formula (T3.50) has to do with probability conservation. We

can verify this by noting that for a stationary state Ψ(x, t) = ψ(x)e−iEt/h̄ in one dimension,
the probability density ρ = |Ψ(x, t)|2 = |ψ(x)|2 is time independent. From the continuity
equation ∇·j + ∂ρ/∂t = 0, which here takes the form

∂j

∂x
= −∂ρ

∂t
= 0,

it thus follows that the current density j(x) is x-independent:

j(x) = constant, (for a stationary state in one dimension). (T3.54)
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This can also be understood from the figure above: Because the probability density ρ(x) is
time independent, there can be no change in the amount of probability inside the volume
between x1 and x2. Therefore, the current entering the volume, Aj(x1), must be equal to
the current leaving it, Aj(x2), for arbitrary x1 and x2.

In order to proceed, and find the values of

R =
|jr|
ji

=
∣∣∣∣BA
∣∣∣∣2 and T =

jt
ji

=
∣∣∣∣CA
∣∣∣∣2 k′k , (T3.55)

one must of course specify the potential inside region II (depending on the forces acting
inside this region). When this part of the potential is known, it is in principle possible
to find the general solution of ĤψE = EψE for this region (containing two undetermined
coefficients, F and G). By using the continuity conditions for ψ and ψ′ for x = 0 and
x = a, one can then find the ratios B/A and C/A (and also F/A and G/A). This means
that the complete eigenfunction ψE(x) is known, except for a normalization constant (A).
However, the over-all normalization constant is not needed in this kind of problem. Only
the ratios B/A and C/A count, and we may very well choose to work e.g. with A = 1.

3.6.c Scattering treated with wave packets

Before applying the above method on concrete examples, it may be instructive to show
how such a scattering process can be understood in terms of wave packets. An incident
particle with reasonably well-defined energy can be represented by a wave packet which is a
superposition of stationary solutions of the type we have seen above. Let us first recapitulate
how such a wave packet behaves for a free particle (zero potential). Superposing free-particle
stationary solutions ei(kx−ωt) we can construct a wave packet

ΨR(x, t) =
∫
φ(k)ei(kx−ωt)dk, ω = h̄k2/2m. (T3.56)

With a suitable distribution φ(k) around a central value k0, corresponding to the energy
E = h̄2k2

0/2m,

we can construct a normalized wave packet ΨR(x, t) moving to the right (R for right), with
a position

〈x 〉R =
h̄k0

m
t.
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This packet passes the origin at t = 0.
In the same manner, we can use the plane waves ei(−kx−ωt) to make a packet

ΨL(x, t) =
∫
φ(k)ei(−kx−ωt)dk, (T3.57)

with the same distribution φ(k) as above. This integral is the same as for ΨR(x, t), only
with −x instead of x. Hence the packet

ΨL(x, t) = ΨR(−x, t) (T3.58)

is simply the mirror image of ΨR(x, t); it is moving towards the left (L) and passes the
origin at t = 0. Here we should note that ΨR(x, t) differs (significally) from zero only in
a fairly small region around 〈x 〉R, and correspondingly for the mirror image ΨL(x, t). The
first figure below illustrates the two packets for t < 0,

and the second one shows the situation for t > 0 :

Both these packets are solutions of the time-dependent Schrödinger equation for the free
particle and are moving with constant group velocities (cf Newton’s first law). Note also
that the Schrödinger equation preserves the normalization of the packets (even if the form
changes somewhat due to the dispersion).

Let us now turn to the scattering problem in section b. For simplicity, we suppose that
V0 = 0, so that V (x) = 0 both for x < 0 and x > a. With A = 1 the stationary
solution in b then takes the form

ΨE(x, t) =

{
ei(kx−ωt) +Bei(−kx−ωt) for x < 0 (ω = E/h̄ = h̄k2/2m),
Cei(kx−ωt) for x > a.

(T3.59)

Superposing such stationary solutions with the same distribution φ(k) that was used above
for the free particle, we find a solution of the time-dependent Schrödinger equation for the
potential V (x) on the form 15

Ψ(x, t) =
∫
φ(k)ΨE(x, t)dk =

{
ΨR(x, t) +BΨL(x, t) for x < 0,
CΨR(x, t) for x > a.

(T3.60)

15In the integrals in (T3.60), the coefficients B/A = B and C/A = C in reality are energy dependent; they
depend on the integration variable k. But in view of the rather sharp distribution φ(k) the k-dependence
will be so slow that we can neglect it and move B(k) ≈ B(k0) ≡ B and C(k) ≈ C(k0) ≡ C outside the
respective integrals, as we have done in (T3.60).
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To realize how this wave function behaves for large negative t or large positive t, we only
need to remember the behaviour of the free-particle packets ΨR(x, t) and ΨL(x, t), keeping
in mind that positive and negative x must be treated separately, according to the formula
above.

Let us first look at the situation for large negative t: We remember that ΨR then differs
from zero only in a limited region far out to the left, while ΨL is far out to the right. Thus
for x < 0, equation (T3.60) tells us that we have only ΨR moving in from the left, while
for x > a we have nothing. For large negative t (and also for large positive t), it can also
be shown that Ψ(x, t) is equal to zero in region II, for 0 < x < a. Thus the situation is as
follows:

large negative t:

Since ΨR is normalized, it follows that the wave function Ψ(x, t) is normalized for large
negative t. But then it is normalized for all t, because the Schrödinger equation preserves
the normalization, as we have already stated.

Proceeding then to the situation for large positive t, we remember that ΨR then has
moved far out to the right, while the mirror image ΨL is equally far out to the left. From
(T3.60) it then follows that for x < 0 we have only BΨL moving outwards on the negative
x-axis. For x > 0 we have only CΨR on its way out to the right.

large positive t:

Thus the incoming wave packet has been divided in two, a reflected wave BΨL(x, t) and a
transmitted wave CΨR(x, t).

The transmission and reflection coefficients are now obviously given by the probabilitity
contents in the respective packets for large positive t. The transmission coefficient is given
by the probability in the transmitted packet, that is, by the integral

T =
∫
|Ψ(x, t)|2dx = |C|2

∫
|ΨR(x, t)|2dx = |C|2, (T3.61)
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where the only contributions come from the region for large positive x where the transmitted
wave is now found. In the same way we find the reflection coefficient

R =
∫
|Ψ(x, t)|2dx = |B|2

∫
|ΨL(x, t)|2dx = |B|2, (T3.62)

where the integral goes over the packet ΨL which is now far out on the left. As we see, the
results of this wave-packet consideration agree with those found in the preceeding section
using only the energy eigenfunction ψE(x) (for the special case k′ = k, and with A = 1).

Comments:
(i) While the wave packet is divided, each individual particle must choose between being

reflected or transmitted. Quantum mechanics gives us only the probabilities, and can not
tell us what happens with a given particle. The theory gives statistical predictions.

(ii) The term De−ikx which was discarded from ψE(x) for x > a, would have given a
wave packet incident from the right (for negative t). Such an action can not be caused by
projectiles incident from the left. That would violate the law of cause and action, it would
violate causality, as we use to say.

(iii) To find the size of R and T one must, as in section b, specify V (x) for region II
and find the eigenfunction ψE(x) for all x, including the coefficients B and C. When ψE(x)
has been found for all x, it is in principle possible to find the behaviour of the wave-packet
solution Ψ(x, t) also for t around zero, that is, the behaviour of the packet just when it
“divides” in two. This behaviour is in general quite complicated.

(iv) Even if the wave-packet method gives a simple physical picture of the scattering
process, we see that the results are completely equivalent to those found using the simpler
method in section b. In the examples below we shall therefore use the eigenfunction method.
We start by considering scattering by a step potential.

3.6.d Scattering by a step potential

The step potential can model e.g. the potential experienced by an electron close to the
surface of a metal. The figure to the left illustrates a realistic potential. On the right this
has been replaced by our simpler model potential, a piecewise constant potential, for which
the calculation is easier.

We consider first

1. Particle incident from the left, with E > V0
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Classically, a particle with E > V0 will be transmitted with 100% probability. It only
changes velocity, because the kinetic energy is smaller on the right.

In quantum mechanics, we have just learnt that the behaviour of the particle can be
analyzed using an energy eigenfunction ψE(x). In the two regions this function has the
forms

I: x < 0 II: x > 0

ψI = eikx + re−ikx ψII = teik
′x

ψ′I = ik(eikx − re−ikx) ψ′II = ik′teik
′x

k =
1

h̄

√
2mE k′ =

1

h̄

√
2m(E − V0)(

E =
h̄2k2

2m

) (
E = V0 +

(h̄k′)2

2m

)

jI = ji + jr = 1 · h̄k
m

+ |r|2 · −h̄k
m

jII = jt = |t|2 h̄k
′

m

R =
|jr|
ji

= |r|2 T =
jt
ji

= |t|2 k
′

k

Here we denote the coefficients by r and t instead of B and C. We have used the results
from section b to write down expressions for the density currents and the reflection and
transmission coefficients. (Note that we have excluded a term De−ik

′x from the general
solution for region II; cf the discussion in section b).

We shall proceed to determine the coefficients r and t using the continuity of ψ and ψ′

for x = 0. This gives

(1) 1 + r = t and

(2) 1− r = t · k
′

k
(follows from ik − ikr = ik′t) .

Addition and subtraction of (1) and (2) gives

2 = t(1 + k′/k) =⇒ t =
2k

k + k′

2r = t(1− k′/k) =⇒ r =
k − k′

k + k′
.

Thus,

R = |r|2 =

(
k − k′

k + k′

)2

and T = |t|2k
′

k
=

4kk′

(k + k′)2
. (T3.63)
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Here we see that quantum mechanics gives a certain probability of reflection (R 6= 0) for
all E > V0, contrary to classical mechanics. Our calculation shows quite clearly that this
non-classical reflection is due to the wave nature of the particles, inherent in the Schrödinger
equation. (Note that the potential step corresponds to a force opposite to the initial direction
of motion, corresponding to an “up-hill”. Howver, in this case force times distance (the step
size) is smaller than the initial kinetic energy, and then the particle is only slowed down; it
does not turn around, according to classical mechanics.

Reciprocity

If we turn the potential around, still letting the particle be incident from the left, we only
need to interchange k and k′ in the calculation above. This does not change the results for
R and T . (Thus we still have non-classical reflection, although the particle now encounters
a “down-hill”, corresponding to a force along the incident direction of motion.)

We can conclude that the partial reflection of the wave on the preceeding page (and hence
of the wave packet) happens — not because the particles meet a region with higher V —
but because they experience a steep change of the potential, with a corresponding change in
the wavelength.

The fact that R and T are “invariant” under the interchange of k and k′ is characteristic
for all waves. In optics this property is known as reciprocity. As you may have noticed,
the formulae are the same as for other types of waves, e.g. for light incident perpendicularly
on on an air-glass surface.

R as a function of E/V0

To illustrate how R depends on E/V0 we note that

k′

k
=
√

(E − V0)/E =
√

1− V0/E.

This gives

R = 1− T =

1−
√

1− V0/E

1 +
√

1− V0/E

2

(E > V0). (T3.64)
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For values of E only slightly larger than V0, we see that there is almost 100% reflection, that
is, a strong deviation from the classical result. However, for increasing values of E/V0 this
deviation decreases fast, since R decreases rapidly. This is clearly illustrated in the figure
above. Here we have also included the quantum-mechanical result for E < V0, which agrees
with the classical one: In point 2 below we show that all particles with E < V0 are reflected
(R = 1).

A paradox?

The fact that particles with E > V0 are reflected with a certain probability is of course
contrary to our “macroscopic intuition”, especially when the particle meets a “down-hill” as
in the figure on page 45. This even looks like a real paradox when we notice that the formula
above for R is independent of the mass of the particle. Thus the formula should hold also
for the car in the figure.

Having started by rolling down the small hill with height 0.05h the car has a kinetic energy
0.05mgh and a total energy E = 1.05 mgh. This is 5% higher than the potential step
(V0 = mgh) corresponding to the “down-hill” with height h. According to the formula for R
this should give a 45% chance for the car to be reflected, that is, for avoiding a catastrophe.
But we all know that this quantum-mechanical result could cause a dangerous optimism, if
believed. Experimentally, the result is catastrophic in 100 percent of the cases.

So what is wrong with this quantum-mechanical calculation? The answer lies in the
model we have used for the potential step. A closer examination shows that the formula
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for the reflection coefficient R is approximately correct, provided that the potential change
occurs over a distance ∆x which is much smaller than the wavelengths λ and λ′. This condi-
tion can perhaps be satisfied for a process on atomic scales, but for our car it is completely
unrealistic. The car has a very small wavelength λ = h/p = h/mv, and ∆x for the cliff will
be very much larger. When the potential changes over a distance which is much larger than
the wavelengths λ and λ′, more accurate quantum-mechanical calculations show that the
probability of reflection is in fact very small, not only for the car but also for small particles.
This illustrates that care must be taken in the use of model potentials.

2. Particles incident from the left, with E < V0

I: x < 0 II: x > 0

ψI = eikx + re−ikx ψII = Ce−κx

ψ′I = ik(eikx − re−ikx) ψ′II = Ce−κx

k =
1

h̄

√
2mE κ =

1

h̄

√
2m(V0 − E)(

E =
h̄2k2

2m

) (
E = V0 +

(h̄k′)2

2m

)

jI = ji + jr = 1 · h̄k
m

+ |r|2 · −h̄k
m

=
h̄k

m
(1− |r|2)

R =
|jr|
ji

= |r|2

What is new here is that the general solution in region II (for x > 0) takes the form
ψII = Ce−κx +Deκx. Here the coefficient D must be set equal to zero, because the energy
eigenfunction is not allowed to diverge (for x→∞). We are thus left with the exponentially
decreasing function Ce−κx in the classically forbidden region for x > 0. This means that
the particles penetrate a certain distance into the classically forbidden region, but not far;
the penetration depth (where |ψII |2 is reduced by a factor 1/e) is

lp.d. =
1

2κ
.

For large x we see that both ψII and ρ = |ψII |2 approach zero. Since the particles can
not accumulate anywhere for this stationary state, we realize that the number of particles
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returning from the forbidden region must be equal to the number entering it. The current
density then simply must be equal to zero everywhere, both inside the barrier and outside.
This also follows from the fact that the current density for such a one-dimensional state is
x-independent. And since j is obviously equal to zero for x =∞, it must be zero for all
x. This means that

jI = ji + jr =
h̄k

m
(1− |r|2) = 0,

that is, we have 100 % reflection, as in classical mechanics:

R = |r|2 = 1.

This can also easily be shown by calculaion. The continuity of ψ and ψ′ gives

(1) 1 + r = C and ik(1− r) = −κC, i.e.

(2) 1− r = i
κ

k
C.

Eliminating C we find that

r =
1− iκ/k
1 + iκ/k

, i.e., |r| = 1, q.e.d.

It can also be instructive to take a look at the wave function. Since ψII/C = e−κx is real,
we note that ψI/C must be a real linear combination of sin kx and cos kx. Then it may be
written as

ψI/C = A cos(kx+ α) = A cosα cos kx− A sinα sin kx. (T3.65)

This can also be shown in the following manner: From (1) and (2) we have

ψI/C =
1

C
(eikx + re−ikx)

=
1 + r

C
cos kx+ i

1− r
C

sin kx

= cos kx− κ

k
sin kx.

Comparing with (T3.65) we see that

A cosα = 1, dvs. A = 1/ cosα and A sinα = tanα = κ/k.

Thus the result is

ψII/C = e−κx and ψI/C =
1

cosα
cos(kx+ α), where α = arctanκ/k.

The figure shows ψ(x)/C and |ψ(x)/C|2, where we note in particular that both function are
smoothly joined at x = 0.
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Note that the standing waves ψ and |ψ|2 are sinusoidal in the allowed region to the left of
the potential step. Note also the similarity with the solutions for the square well. As for
the solutions for the latter, we here have stationary maxima and minima in the probability
density. The difference is that here we do not have a step to the left. Therefore we do not get
quantization of wavelengths and energies. Also, the sinusoidal solutions continue towards
x = −∞. Thus for each energy 0 < E < V0, we have one unbound state.

Wave-packet solution

How will a wave packet solution behave in this problem? The figure below, copied from
Eisberg and Resnick, Quantum Mechanics..., gives a certain impression.
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Before and after the reflection the behaviour is as expected from our experience above. Note,
however, that these graphs also include dispersion of the wave packets; the reflected wave is
slightly wider than the incident one.

During the reflection process, however, the behaviour of this wave-packet solution is
complicated. In addition to the penetration into the barrier, we note that the packet for
x

<
≈0 develops “spikes”, which gradually disappear when the packet is leaving the barrier.

3.6.e Scattering on square well or square barrier

(Hemmer p 61, Griffiths p 62, B&J p 150 and p 168.)
We consider a particle with energy E incident from the left, towards the potential

V (x) =

{
0 for x < 0 og x > L,
V0 for 0 < x < L.

(T3.66)

(i) For V0 < 0, this is scattering on a potential well:

(ii) For V0 > 0 it is scattering on a potential barrier :

Classically the velocity in region II changes in both cases. Here the kinetic energy is E−V0,
but as long as V0 is less than E, we have of course complete transmission. Quantum me-
chanically we must expect non-classical reflection even for E > V0, as we are used to for
other types of waves in similar situations.

(iii) The third case is when V0 > E:

Quantum mechanically, we realize from our experience with the potential step that particles
incident from the left will penetrate at least some distance into the barrier. And if the length
L and the difference V0−E are not too large, we also realize that some of the particles may
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penetrate sufficiently far into the barrier that they can escape to the right. Classically a
particle with energy E < V0 can not pass the barrier. To do that, it would have to “dig a
tunnel through the barrier”. Quantum mechanically, however, there is a certain chance for
transmission — therefore the name tunnel effect for this process.

We shall now attack these three processes with the usual strategy, which is to find an
energy eigenfunction for the potential in question with the correct asymptotic behaviour:

I: x < 0 (V = 0) II: 0 < x < L (V = V0) III: x > L (V = 0)

ψI = eikx + re−ikx ψII = aeiqx + be−iqx ψIII = teikx

ψ′I = ik(eikx − re−ikx) ψ′II = iqaeiqx − iqbe−iqx ψ′III = ikteikx

k =
1

h̄

√
2mE (for V0 < E:) q =

1

h̄

√
2m(E − V0)(

E =
h̄2k2

2m

)
(for V0 > E:) q = iκ =

i

h̄

√
2m(V0 − E)

jI = ji + jr =
h̄k

m
(1− |r|2) jt = |t|2 h̄k

m

ji = 1 · h̄k
m
, jr = |r|2 −h̄k

m

R =
|jr|
ji

= |r|2 T =
jt
ji

= |t|2.

In region I, we have a solution of the same type as for the potential step, with the same
expressions as before. This is the case also for region III when we set k′ = k, so that the
solution becomes ψIII = teikx, which has the correct behaviour for large x. In region II
the wave number differs from k. We have denoted it by q, as in Hemmer. For V0 < 0 (case
(i), well) q is larger than k. For 0 < V0 < E, (case (ii), barrier) q is smaller than k. For
V0 > E (tunneling case, (iii)) q becomes imaginary,

q =
1

h̄

√
−2m(V0 − E) =

i

h̄

√
2m(V0 − E) ≡ iκ. (T3.67)

For the last case the solution for the barrier region II may be written on the well-known
form

ψII = ae−κx + beκx, ψ′II = κ
(
−ae−κx + beκx

)
(V0 > E). (T3.68)

This shows that the formula ψII = aeiqx + be−iqx works also for q = iκ, that is, covers
all three cases.

This means that we only have to carry out the process of joining the solutions (using
continuity) once, employing the last-mentioned formula for ψII . The results for case (iii) can
then be obtained by inserting q = iκ into the final results for r, t, R and T .

We carry out the joining in the following manner:

The continuity of ψ and ψ′ for x = 0 gives:

(1) 1 + r = a+ b and ik − ikr = iqa− iqb, i.e.,

(2) 1− r =
q

k
(a− b).
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The continuity of ψ and ψ′ for x = L gives:

(3) aeiqL + be−iqL = t eikL and iqaeiqL − iqbe−iqL = ikt eikL, i.e.,

(4) aeiqL − be−iqL =
k

q
t eikL.

By adding and subtracting (3) and (4) we can express the coefficients a and b in terms of
the coefficient t:

a =
q + k

2q
t eikLe−iqL,

(T3.69)

b =
q − k

2q
t eikLeiqL.

Setting in for a and b in (1) and (2) we can then eliminate a and b:

(1) 1 + r = t eikL(cos qL− i k
q

sin qL),

(2) 1− r = t eikL(cos qL− i q
k

sin qL).

Addition of (1) and (2) now gives

t = e−ikL
2kq

2kq cos qL− i(k2 + q2) sin qL
, (T3.70)

and subtraction gives

r =
i(q2 − k2) sin qL

2kq cos qL− i(k2 + q2) sin qL
. (T3.71)

Taking the absolute squares of these, we find the general formulae for the reflection and
transmission coefficients:

R =
(q2 − k2)2 sin2 qL

4k2q2 cos2 qL+ (k2 + q2)2 sin2 qL
,

which can also be written as

R =
(k2 − q2)2 sin2 qL

4k2q2 + (k2 − q2)2 sin2 qL
, (T3.72)

and

T =
4k2q2

4k2q2 + (k2 − q2)2 sin2 qL
. (T3.73)

Here we see that R + T = 1.
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These formulae contain a lot of information. This is because our problem contains several
variable parameters: The length L and the height V0 of the barrier (or the depth |V0| of the
well), in addition to the mass m and the energy E of the particles.

We start by noting that we get non-classical reflection (R > 0) for almost all V0 values
less than E. This holds both for the well and the barrier:

But this is of course not surprising, after our experience with scattering against a potential
step. It also agrees with experience from other wave phenomena: Because the wavelength
λII = 2π/q differs from the wavelength λ = 2π/k outside the barrier or well region, we
must expect reflection.

Then it is perhaps more surprising that there are exceptions: When qL is an integer
multiple of π, qL = nπ (that is, when L = nπ/q = n · λII/2 is an integer multiple of
λII/2), then sin qL = 0, and we find that T = 1 — we have complete transmission; the
barrier or the well is “transparent” for the particles. This is analogous to a similar effect
in optics, and is in a way due to destructive interference between the reflections at x = 0
and x = L. To see how this comes about, we may set qL = nπ in (T.69–71). This gives

r = 0, t = (−1)ne−ikL, a =
q + k

2q
and b =

q − k
2q

,

so that the energy eigenfunction becomes:

ΨI = eikx, ψII =
q + k

2q
eiqx +

q − k
2q

e−iqx ψIII = (−1)neik(x−L) = (−1)nψI(x− L),

= cos qx+ i
k

q
sin qx.

For n = 2 (L = λII) we see that the real part of this wave function looks like this:

This is the same result that we get if we start with a picture of the free-particle solution eikx,
“cut it in two” at x = 0, then move the right-hand part a distance L = λII to the right,
and insert ψII in the space between the two parts. The latter must then be chosen in such
a way that ψII and ψ′II are equal to ψI and ψ′I for x = 0, and with the same values also
at x = L. This requirement can be satisfied because ψII is periodic with wavelength λII .
In this way, we may “smuggle in” a well or a barrier in such a way that it “isn’t noticed”.

A similar effect also occurs in three dimensions, where atoms become “transparent”
or “invisible” for electrons of with certain energies. This is known as the Ramsauer–
Townsend effect.
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Between the maximal values T = 1 for qL = nπ, the transmission coefficient has
minima. As a function of L (with m, E and V0 kept fixed) we see that T gets a simple
periodic behaviour. This may be illustrated by two examples:

(i) Particles with energy E = |V0|/3 are incident on a well with depth |V0| (V0 = −|V0|).
The wave number q(i) =

√
2m(E − V0)/h̄2 =

√
2m · 4|V0|/3h̄2 inside the well then is twice

as large as the wave number k(i) =
√

2m · |V0|/3h̄2 outside. Then

T =
4k2/q2

4k2/q2 + (k2/q2 − 1)2 sin2 qL
=

1

1 + 9/16 · sin2 qL
, q = q(i).

(ii) Particles with E = 4
3
V0 are incident on a barrier with height V0. This gives k(ii) =√

2m · 4V0/3h̄
2 and q(ii) =

√
2m · V0/3h̄

2, that is, we get the opposite ratio, q/k = 1/2.
With this choice, we get the same T as above,

T =
4q2/k2

4q2/k2 + (1− q2/k2)2 sin2 qL
=

1

1 + 9/16 · sin2 qL
, q = q(ii),

and we may illustrate the two results with one diagram, with qL as abscissa:

As a function of the energy E the behaviour of T is more complicated, and it is also
strongly dependent of the other parameters. With k2 = 2mE/h̄2 and q2 = 2m(E − V0)/h̄2

we have

T =
4E(E − V0)

4E(E − V0) + V 2
0 sin2 qL

, qL =

√
2mL2

h̄2 (E − V0). (T3.74)

(i) As an example, we may choose a fairly “strong” well, with V0 = −|V0| and with√
2m|V0|L2/h̄2 ≡ γ = 20. (Consulting the results for square wells, one finds that this well
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allows for 7 bound states. 16 The following figure shows

Tbrønn =
4 E
|V0|(

E
|V0| + 1)

4 E
|V0|(

E
|V0| + 1) + sin2 qL

, with qL =

√√√√2m|V0|L2

h̄2

E − V0

|V0|
= γ

√
E

|V0|
+ 1,

(T3.75)
as a function of E/|V0| (brønn=well):

Here, you should note that T approaches zero in the limit E → 0. For increasing E we
observe maxima (equal to 1), each time qL is an integer multiple of λII/2). About midway
between the maxima we find minima, and we note that these approach 1 for increasing
energies. It is reasonable that the reflection coefficient decreases in an over-all manner like
this for increasing energies. (Page 169 in B&J you will find corresponding results for a much
stronger well.)

(ii) For a barrier, with E > V0 > 0, the expression (T3.33) takes the form

Tbarrier =
4 E
V0

( E
V0
− 1)

4 E
V0

( E
V0
− 1) + sin2 qL

, with qL =

√
2mV0L2

h̄2

E − V0

V0

≡ γ

√
E

V0

− 1. (T3.76)

In the figure below, the curve for E/V0 > 1 gives the result for a barrier strength γ =√
2mV0L2/h̄2 = 4. In this region we observe a couple of maxima with aminimum in between.

16Note that the parameter γ =
√

2m|V0|L2/h̄2 introduced here is twice as large as the one used in Lecture

notes 3, when we set L = 2l.
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We also note that T does not go to zero when E/V0 approaches 1 from above. Thus we
have transmission even in the limit where the kinetic energy in region II goes to zero. The
value of T in this limit can be found analytically by setting E/V0 = 1 + ε and expanding
for small ε. The result is

lim
E→V0

T = lim
ε→0

4ε

4ε+ γ2ε
=

4

4 + γ2
(= 0.2 for γ = 4) . (T3.77)

3.6.f The tunnel effect

The above finite value of Tbarrier in the limit E → V0 is connected to the fact that we have
transmission also for 0 < E < V0. This is tunneling, case (iii). As you can observe in the
figure, the curve for Tbarrier connects smoothly with the probability Ttunn for tunneling at
E = V0. This is contrary to the classical probability, which jumps dicontinually, from 1 to
zero. As mentioned in the discussion on page 20, we can find Ttunn by setting

q =
1

h̄

√
2m(E − V0) =

i

h̄

√
2m(V0 − E) ≡ iκ

in the calculations above, including the general formula (T3.74) for T . With

sin qL = sin(iκL) =
e−κL − eκL

2i
= i sinh(κL)

we have from (T3.74):

Ttunn =
4 E
V0

(1− E
V0

)

4 E
V0

(1− E
V0

) + sinh2 κL
, κL =

L

h̄

√
2m(V0 − E) ≡ γ

√
1− E/V0. (T3.78)

For γ =
√

2mV0L2/h̄2 = 4, this formula gives the curve for 0 < E/V0 < 1 in the diagram
above. Even with such a modest barrier (γ = 4), we see that Ttunn decreases rapidly for
decreasing energy, and goes towards zero when E → 0.

The central aspect of the tunnel effect is the way in which Ttunn depends on the barrier
strength. This dependence is of course contained in the formula above. To gain a more
qualitative understanding of this, we may return to the potential step, corresponding to an
infinitely long barrier, L =∞. The figure shows |ψ/C|2 = e−2κx for the case E = 0.98V0,
which gives a fairly large penetration depth lp.d. = 1/2κ into the forbidden region. (The
abscissa in the figure is x in units of lp.d..)
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If we “cut” the infinite barrier at x = L1 << lp.d., we realize that the particles will
easily penetrate the resulting narrow barrier of length L1. We must then expect that the
transmission coefficient is close to 100 %. This is verified by the formula for T . When
κL << κlp.d. = 1

2
, we have that sinh2 κL ≈ (κL)2 << 1, and we find that

Ttunn ≈
4 E
V0

(1− E
V0

)

4 E
V0

(1− E
V0

) + (κL)2

<≈ 1, (κL << 1). (T3.79)

The opposite extreme is to cut the barrier at x = L2 >> lp.d.. Then e−2κL2 = e−L2/lp.d. <<
1. From the figure we would then naively expect to find a very small transmission probabil-
ity, of the order of e−2κL2 . Also this is verified by the formula for T : For κL >> κlp.d. = 1

2

we find that

sinhκL =
eκL − e−κL

2
≈ 1

2
eκL

is very large, and (T3.78) gives a T that goes as e−2κL, as expected:

Ttunn ≈ 16
E

V0

(1− E

V0

) e−2κL << 1, κL = L
√

2m(V0 − E)/h̄2 >> 1. (T3.80)

Here, the slowly varying prefactor 16 E
V0

(1 − E
V0

) has the maximal value 4. This prefactor is

much less important than the factor e−2κL, which shows that the probability for tunneling
is very sensitive to the size of the barrier, via the product κL.

The reason that the simple arguments above — based on |ψ|2 for the potential step
— work so well qualitatively, is that the probability density |ψ|2 for the tunneling case in
the barrier region 0 < x < L resembles very strongly |ψ|2pot.−sprang = |Ce−κx|2 for the
potential step. This is illustrated in the figure below, where we have chosen a modest barrier

with a strength γ =
√

2mV0L2/h̄2 = 2.5, and E = 1
2
V0 (so that κ = k).
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For x > L, |ψ|2tunn = |teikx|2 = |t|2 is constant (flat) as we see. From this part of the
figure we may then read out Ttunn = |t|2, which in this case is about 0.11. The other curve
shows |ψ|2pot.−sprang, still for E = 1

2
V0. This is the curve with the highest maximae for

x < 0. (The reflection coefficient is 100 % for the potentila step). For x > 0 this curve
has the form |C|2e−2κx and goes to zero for large x. This curve is therefore not flat for
x = L. Since |ψII |2 = |ae−κx + beκx|2 for the tunneling case is flat for x = L, we realize
that ψII must contain a certain part of the increasing function eκx. However, because eκL is
much larger than e−κL, we do not need much of this function; from (T3.69) it follows that
|b/a| = e−2κL. This is the reason why the two curves resemble each other so much in region
II. We may conclude that estimates of T based on |ψ|2pot.−sprang gives us the all-important
factor e−2κL; we loose only the prefactor.

More realistic barriers

How large barriers are we talking about? To get an idea about the order of magnitude, we
may assume that the particles are electrons and that V0 is 1/4 Rydberg, that is,

V0 =
1

4

h̄2

2mea2
0

=
1

4
· 13.6 eV ≈ 3.4 eV.

This gives

γ ≡
√

2meV0L2

h̄2 =

√
L2

4a2
0

=
L

2a0

.

In this case, we obtain a barrier strength γ = 2.5 (as in the figure above) by choosing
L = 5a0, where a0 is the Bohr radius. If we choose E = 1

2
V0 = 1.7 eV, we have

κL = L
√

2me(V0 − E)/h̄2 = γ/
√

2,

so that the penetration depth becomes

lp.d. =
1

2κ
=

L

γ
√

2
= a0

√
2.

For this barrier we found a transmission probability 0.11.
In practice, the barriers are often much larger and T much smaller than in this example.

T then becomes very sensitive to κL. If e.g. T ∼ e−2κL = 10−10, then a doubling of L
gives a T of the order of 10−20 !

What about more realistic barriers, which do not have the idealized “square” form?

By taking the logarithm of the transmission coefficient (T3.80) for the square barrier and
using that L =

∫ L
0 dx , we may write this logarithm in the following manner:

lnTtunn = ln(prefactor)− 2κL = ln(prefactor)− 2

h̄

∫ L

0

√
2m(V0 − E) dx.
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It is then tempting to ask if the formula

lnTtunn = ln(prefactor)− 2

h̄

∫ L

0

√
2m[V (x)− E] dx, (T3.81)

where we have replaced V0 by V (x), will work for the more realistic potential on the right?
The answer turns out to be yes. In chapter 8 Griffiths shows that this formula is correct,
with a prefactor of the order of 1. (See also 8.4 in B&J.)

If this logarithm is a large negative number, we understand from the figure on the right
that the logarithm will change drastically even for small changes of the energy E. In such
cases the tunneling probability becomes very sensitive to small changes in the energy. This
will be demonstrated for a couple of examples.

3.6.g Field emission

(Hemmer p 64, B&J p 420)
Tunneling plays an important role in many physical phenomena. One of these is field

emission. In a metal at room temperature almost all electrons need a few extra elec-
tron volts in order to escape from the metal. This is the so-called work function which
is well known from the discussion of the photoelectric effect, and which is typically of
the order of W ∼ 2− 5 eV, depending on the type of metal, whether the surface is ox-
idized etc. On its way out through the metal surface, the electrons thus meet a poten-
tial step, and the deficit W in kinetic energy makes the outside a forbidden region with

κ =
√

2me(V0 − E)/h̄2 ≈
√

2meW/h̄
2, and a penetration depth of the order of

lp.d. =
1

2κ
= 1

2

√√√√ h̄2

2meW
= 1

2
a0

√√√√ h̄2

2mea2
0

1

W
∼ 1

2
a0

√
13.6

4
∼ 0.4 Å,

if we set W = 4 eV.

One way to liberate electrons is to radiate the surface with ultraviolet light (the photo-
electric effect). An alternative is the “hot cathode” (or incandescent cathode), where elec-
trons are “evaporated” by heating the metal to a sufficiently high temperature (cf the hot
cathode in the old television tube). However, electrons can also be extracted from a “cold”
cathode, using so-called field emission:
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By exposing the metal for a strong electric field E , we change the potential encountered by the
electron from a step potential with V0 − E = W to a potential of the type V (x) = V0 − eEx.
Here we are assuming a homogeneous E-field. As shown in the figure, the electon now en-
counters a forbidden triangular barrier, where V (x)− E = W − eEx, so that the length of
the forbidden barrier is

x0 =
W

eE
.

From the penetration depth calculated above, we realize that x0 must be made very
small (of the order of Angstroms) in order to obtain a transmission probability that is not
extremely small. This requires a very strong E-field, E ∼ W

ex0
∼ 1011 V/m, of the same order

of magnitude as those found inside atoms. In practice, one is forced to work with weaker
fields and correspondingly wider barriers. This gives very small values for T , but the field
emission is still measurable and significant.

With the assumption of a homogeneous E-field and hence with a triangular barrier, we
must expect that lnT is proportional to the barrier length x0, i.e. inversely proportional to
E . This can be verified by equation (T3.40), which gives

ln
T

prefactor
= −2

h̄

∫ x0

0

√
2me[V (x)− E] dx = −2

√
2me

h̄

∫ x0

0

√
W − eEx dx

= −2
√

2me

h̄

W 3/2

eE

∫ 1

0

√
1− y dy︸ ︷︷ ︸
2/3

(y =
eE
W

x)

= −4
√

2meW
3/2

3h̄e

1

E
. (T3.82)

A typical work function for metals is W ∼ 4 eV. With me = 0.511 MeV/c2 for the electron
and h̄ = 0.6582 · 10−15 eVs, we may then express the result as follows:

ln
T

prefactor
≈ −54.6

(
109 V/m

E

)(
W

4 eV

)3/2

. (T3.83)

Thus a work function of W = 4 eV and a field strength E = 109 V/m gives lnT ≈ −54.6.
Here, we have discarded the logarithm of the prefactor, which is unimportant in this con-
nection.

Here it should be noticed that even if the transmission probability T is very small, we
may get measurable field-emission currents, because of the large number of electrons which
are colliding with the surface per second. [In the metal we have ∼ 1022 conduction electrons
per cm3, and with kinetic energies of the order of 5 eV these are moving with a velocity
which is 1/200 of the velocity of light.]

It is also important to note that a moderate change of V0 − E or of E can change T
by several “orders of magnitude” (powers of 10). As an example, if we reduce E from
109 V/m to 1

2
·109 V/m, this corresponds to a doubling of lnT , from −54.6 to −109.2. The

transmission probability then changes from ∼ 10−24 to ∼ 10−48 .
Thus, as we have stressed before, the probability T is extremely sensitive to small changes

in the length or height of the barrier. This property is exploited in modern applications of
field emission, e.g. in Scanning Tunneling Microscopy, STM. In STM, one uses escaped
electrons to create a picture of the surface of the emitter.
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3.6.h Scanning tunneling microscopy (STM)

(Hemmer p 65, B&J p 153)
In the STM microscope, the barrier is made up of the gap between e.g. a metal surface

and the tip of a probe formed as a needle. By the use of a cleverly designed electro-mechanical
system (including the use of piezo-electric forces) the tip can be brought very close to the
surface. When a voltage is applied over the gap, a weak tunneling current will flow, as shown
in the figure. This current is very sensitive to changes in the gap distance and hence to the
structure of the surface. There are two ways to operate such a system:

(i) In the constant-current mode a feedback mechanism is used to keep the distance
between the probe (and hence also the current) constant. Then, under the sideways sweeping
over the surface, the needle also is moved vertically, to keep the distance constant. By
monitoring the vertical motion during a systematic sweeping we then get a picture of the
surface; the needle follows the “mountains and the valleys” of the surface, or to be more
specific, of the electron density of the surface atoms. The vertical resolution in such a
microscope can be as small as 0.01 Å.

(ii) In the constant-height mode, the needle is sweeping along the surface at constant
height, i.e., without vertical motion, and with a constant voltage over the gap. The current
then will vary strongly following the variations in the distance from the needle to the surface.
From these variations one can extract information on the topography of the surface.

The picture below is from a graphite surface,

and clearly shows the ring structure of the top graphite layer. Each of the rings contains six
carbon atoms, of which three seem to be lying slightly higher than the others. In reality, the
six carbon nuclei lie in the same plane. The three atoms which seem to be lying lower than
the others form bindings with atoms of the next layer immediately below them. Therefore
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these binding orbitals are shifted a little downwards, compared with the orbitals of the
atoms which do not have neighbours right below them. 17 It is these differences in the
eletron density which are monitored by this method.

3.6.i α decay and fusion

(Hemmer p 65, B&J p 421, Griffiths p 281)
A long time before tunneling was applied in technology it was discovered that the process

plys an important role in several natural phenomena. One of these is α-decay, where heavy
radioactive nuclei decay emitting α particles (helium nuclei).

It turns out that nuclei with Z ≥ 84 and nucleon number A(= Z +N) ≥ 210 are
all more or less unstable and decay mainly via emission of α particles. The experimental
lifetimes τ (and the half-lives τ1/2) for such α emitters show extreme variations — from
extremely unstable ones like e.g. 212

84Po with a lifetime of less than a microsecond — and
all the way up to almost stable nuclei with lifetimes of the order of the age of the universe,
∼ 1010 years, which occurs e.g. for 238

92U. This is a span of around 25 orders of magnitude.
The strange thing is that these lifetimes are also strongly correlated with the kinetic

energies of the emitted α particles. The kinetic energies are largest for the most short-lived
nuclei — up to ∼ 9 MeV — and smallest for the most stable ones — down to 4 MeV. Lower
kinetic energies than ∼ 4 MeV are not observed for emitted α particles.

Already in 1928, soon after quantum mechanics was discovered, George Gamow (and
independently, R.W. Gurney and E.U. Condon) proposed tunneling as an explanation of
α decay. Gamow’s explanation is easy to understand when one considers the potential
V (r) between the α particle with charge 2e and the remaining nucleus — often called the
daughter nucleus — with charge Ze. When the distance r is a little larger than the radius
r1 of the “daughter”, V is is a pure Coulomb potential,

V (r) =
2Ze2

4πε0

1

r
(r

>∼ r1).

For r
<∼ r1, this potential is modified due to the finite size of the proton distribution, and

even more important, due to the strong nuclear force, which is the force that keeps the
nuclei together, in spite of the Coulomb repulsion between the protons. The strong force
has a very short range (∼ 1 fm). In our simple model this means that the α particle is
strongly attracted by the “daughter” when being close to the surface. This leads to a total
interaction potential between the α particle and the daughter with the following (somewhat
simplified) form:

17The scanning tunneling microscope has a serious drawback; it requires a surface that is electrically
conducting. Alternatively, a non-conducting surface has to be covered by a layer of conducting atoms.
This is a problem also for metals like aluminum, where the surface is covered by non-conducting oxides.
In the AFM microscope (Atomic Force Microscope) one avoids this problem by using a probe made from
cheramics or some semiconducting material. During sweeping, this probe is kept pressed aganst the surface
by a weak force. This force is balanced by a repusive force due to the Pauli principle (which attempts to
keep the electron clouds in the needle and the surface separated from each other). Here, the needle is moving
vertically much the same way as in the constant-current-mode above. An AFM microscope can also work
in non-contact mode, where the topography is monitored by a probe kept at a certain distance from the
specimen.
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The radius r1 of the daughter can empirically be taken to be

r1 ≈ (1.07 fm) · A1/3, (T3.84)

which is r1 ∼ 6− 7 fm for A ∼ 210 (Z ∼ 80). This means that the “height” of the
Coulomb barrier is approximately

V (r1) =
2Ze2

4πε0

1

r1

∼ 30 MeV.

As illustrated in the figure, this maximum is much higher than the energy E of the emitted
α particle. Classically, the α-particle can therefore not escape, even though its energy is
positive. However, according to quantum mechanics there is a small chance that it may
tunnel through the Coulomb barrier each time it hits the surface from the inside of the
nucleus. This means that the state of the α particle is not really a truly stationary bound
state, but what we often call a metastable state. To get an idea about how many chances the
particle gets to escape, we may use a simplified semiclassical argument: We assume that the
particle is moving back and forth between the “walls” of the nucleus with a velocity which

is of the order of
√

2E/mα. This gives an impressive collision rate (number of collisions per

unit time)

ν ∼ v

2r1

∼ c

2r1

√
2E

mαc2
∼ 1021 s−1.

Although this estimate is semiclassical and very rude, we understand that the transmission
coefficients must be very small; otherwise the lifetimes (τ = 1/(νT )) would indeed be very
short. This means that

lnT ≈ −2

h̄

∫ r2

r1

√
2mα[V (r)− E] dr

for these Coulomb barriers must be large negative numbers; we are dealing with almost
impenetrable barriers. Then without actually doing any calculations, we can state that the
difference between the logarithms lnT for E ≈ 9 MeV and E ≈ 4 MeV, will be large, cf
the figure. This way we can understand why the lifetimes vary with as much as 25 powers
of 10.
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From this argument we can also understand why α radioactivity with E
<∼ 4 MeV is not

observed. This is because for α particles with lower energies, the barrier is so large that it is
in practice impenetrable. The lifetimes then become larger than 1010 years, and such nuclei
are in practice stable.

These considerations also illustrate why it so difficult to obtain fusion of nuclei under
laboratory conditions. Even with temperatures of the order of 1.5 ·107 K, which are found in
the core of the sun, the thermal kinetic energy of the nuclei is as small as 3

2
kBT ∼ 1 keV.

With kinetic energies of this size, it becomes extremely difficult for two nuclei to overcome
the Coulomb barrier, so that they get close enough to merge into a heavier nucleus. However,
there still is a small chance for tunneling so that fusion can take place, and it is processes of
this kind that keeps the sun burning.


