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Lecture notes 6

6. Atoms and molecules
“Lecture notes” 6 — Atoms and molecules — covers the last part of this
course. It is a continuation of Lecture notes 5.

6.1 From the Coulomb potential to atoms

Section 6.1 — ”From the Coulomb potential to atoms” — is a translation of
notes written by Hemmer, and covers some of the contents in his chapters 8 and
9.

We have solved the Schrödinger equation for one particle in a Coulomb potential, and we
have seen how the results can be applied to the two-particle system of a hydrogen atom
(using the reduced mass).

For an atom with Z electrons and a nucleus it is a simple matter to write down the
time-independent Schrödinger equation. The wave function depends on Z + 1 vector coor-
dinates, ψ(~r1, . . . , ~rZ , ~R), and the classical energy function (the Hamilton function) consists
of the kinetic energy, the Coulomb attraction between the nucleus and the electrons and the
Coulomb repulsion between each pair of electrons. The Hamiltonian operator is then readily
obtained by replacing the kinetic terms by the corresponding operators.

It is, however, very difficult to solve this equation. This can only be done approximately,
and it is also difficult to obtain accurate approximate solutions. Here, we shall confine
ourselves to sketch the outline of how this is done. We start by discussing some principal
features of many-particle systems.

6.1.1 Identical particles, symmetry, the Pauli principle and spin

a. Electrons are fermions

In classical mechanics, we can in principle always distinguish between particles, and follow
their individual trajectories (orbits) as functions of time. We also imagine that this can be
done without disturbing the particle. This is not so in quantum mechanics: Firstly, there
are no well-defined classical orbits (as we have already seen). Secondly, it is in principle
impossible to distinguish between identical particles like e.g. two electrons (except when
they are very far apart).

The latter principle has important and experimentally verifiable consequences. It means,
among other things, that the spectra of many-electron atoms are quite different from what
they would be if it were possible to distinguish between the electrons. One of the conse-
quences of this principle is Pauli’s exclusion principle, which is the main cornerstone
when it comes to understand the periodic system. As we shall see, the exclusion principle is
intimately connected with the indistinguishability of identical particles.

For two identical and indistinguishable particles, the numbering of their coordinates
has no physical significance. Thus, there is no physical difference between Ψ(1, 2) and the
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state Ψ(2, 1), where the coordinates of the two particles have been interchanged. We must
therefore have

|Ψ(1, 2)|2 = |Ψ(2, 1)|2.
This means that the two functions can only differ by a phase factor:

Ψ(1, 2) = eiαΨ(2, 1),

where α is real.
In naturen there are only two alternatives. The two-particle state is either symmetric or

antisymmetric with respect to interchange of the particle coordinates:

Ψ(2, 1) =

{
+Ψ(1, 2) : bosons
−Ψ(1, 2) : fermions

(T6.1)

Particles with symmetric wave functions are called bosons, particles with antisymmetric
wave functions are called fermions. And, what is very important for us: Electrons are
fermions, and must therefore be described by states which are antisymmetric with respect
to interchange of the particle indices.

b. Pauli’s excusion principle

To see how the Pauli principle follows for identical fermions, let us consider two particles
1 and 2 which do not interact with each other, in an external potential V (r), so that the
Hamiltonian is a sum of one-particle contributions,

Ĥtot = Ĥ(1) + Ĥ(2)

(
Ĥ(n) ≡ − h̄2

2m
∇2
n + V (rn), n = 1, 2

)
.

Then the product of two one-particle states,

ψi(1)ψj(2), or ψi(2)ψj(1), (T6.2)

where ψi and ψj are two arbitrary eigenstate solutions of the one-particle Schrödinger equa-

tion Ĥψn = Enψn, will be a solution of the time-independent Schrödinger equation for the
two particles. Both the product functions (T6.2) have the same energy eigenvalue Ei + Ej.
In the case where the two particles are not identical, both these product functions are ac-
ceptable as eigenfunctions. If the particles are identical, on the other hand, none of them
is acceptable, because the symmetry requirement (T6.1) is not satisfied. However, this dis-
ease can be cured. Since both the product functions have the same energy, we can form a
symmetric linear combination

ψS(1, 2) =
1√
2

[ψi(1)ψj(2) + ψj(1)ψi(2)] (T6.3)

which satisfies the symmetry requrement ψ(2, 1) = ψ(1, 2) for bosons. The factor 1/
√

2
ensures that this wave function is normalized. Similarly we can construct an antisymmetric
linear combination

ψA(1, 2) =
1√
2

[ψi(1)ψj(2)− ψj(1)ψi(2)] (T6.4)
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which satisfies the antisymmetry requirement ψ(2, 1) = −ψ(1, 2) for fermions.
Here we can now see that if the two one-particle states are the same, (that is, i = j), then

in the fermion case we have ψA(1, 2) = 0; there is no such two-particle wave function where
the two fermions are in the same one-particle state. This is an example of Pauli’s exclusion
principle:

Two fermions can not occupy the same one-particle state. (T6.5)

For more than two identical fermions this can be generalized: We start by noting that
the above two-fermion state (T6.4) with the correct antisymmetry can be written as a de-
terminant:

ψ(1, 2) =
1√
2

∣∣∣∣∣ ψi(1) ψi(2)
ψj(1) ψj(2)

∣∣∣∣∣ . (T6.6)

An obvious generalization gives for Z fermions the following antisymmetric state, constructed
in terms of the one-particle states ψ1, ψ2, . . . , ψZ :

ψ(1, 2, . . . , Z) =
1√
Z!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ1(2) . . . ψ1(Z)
ψ2(1) ψ2(2) . . . ψ2(Z)
. . . . . . . . . . . .
. . . . . . . . . . . .

ψZ(1) ψZ(2) . . . ψZ(Z)

∣∣∣∣∣∣∣∣∣∣∣∣
. (T6.7)

This state is called a Slater determinant and has the following properties:

• It is antisymmetric: If we interchange two of the particle indices (coordinates), e.g. 1
and 2, the new determinant will be equal to the old one, except that two columns have
been interchanged. Such an interchange gives a minus sign.

• If two of the one-particle states are equal, ψ1 = ψ2 for example, then two of the lines
of the determinant will be equal. A determinant with two equal lines is equal to zero.
Thus we recover the exclusion principle: Two fermions can not occupy the same one-
particle state.

A small exercise: Show that the functions

ψ± =
1√
2

[ψα(r1)ψβ(r2)± ψα(r2)ψβ(r1)]

are normalized, when ψα and ψβ are orthonormal.

c. Spin

The electron – and many other particles – have intrinsic angular momenta S, called spin.
The spin has angular-momentum properties equal to those studied previously for the orbital
angular momentum L. Contrary to the orbital angular-momentum quantum number l which
is always an integer, the spin angular-momentum quantum number (called s) equals
1
2

for the electron. This means that the eigenvalue of S2 is s(s+ 1)h̄2 = 1
2
(1

2
+ 1)h̄2 = 3

4
h̄2,

and that the eigenvalues of Sz equal msh̄ with ms = −1
2

or ms = 1
2
. Thus the size of the spin
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is fixed (contary to the orbital angular momentum L), and the spin has only two possible
“orientations”. There are only two different eigenstates for the spin, which we can denote
by χms , that is, χ−1/2 (“spin down”, Sz = −1

2
h̄) and χ+1/2 (“spin up”, Sz = +1

2
h̄). These

can be taken to be orthonormalized, so that 〈χm, χm′ 〉 = δmm′ .

A small exercise: What is |S| for a spin-1
2

particle? What is it for a particle
with spin 1?
One more: What are the values that can be measured for Sz for a particle with
spin 1

2
? What are the angles between S and the z-axis corresponding to these

measured values of Sz? [Hint: Se page 14 in Lecture notes 5.]

To describe the quantum-mechanical state of an electron completely, we have to use a
“state function” which contains information not only on the whereabouts of the electron but
also on the direction of its spin. In the abscense of a magneitic field, the classical energy
function and hence the Hamiltonian will be approximately independent of the spin direction.
Simplifying slightly, we may then describe a one-particle state of an electron as a product of
a spatial wave function (orbital) and the spin state χ. As an example,

ψi,+1/2(1) ≡ ψi(r1)χ+1/2(1)

describes a state where particle number 1 is in the spatial one-particle orbital ψi(r) with
Sz = +1

2
h̄.

Here, we can now note that the two-particle state

ψ(1, 2) = ψi(r1)ψi(r2) · 1√
2

[
χ+1/2(1)χ−1/2(2)− χ−1/2(1)χ+1/2(2)

]
satisfies the antisymmetry requirement, although both electron 1 and electron 2 are in the
same orbital ψi(r). The “moral” is that the Pauli principle allows two electrons (but not
more) to be in the same orbital, provided that the two spins are in the antisymmetric spin
state

χA(1, 2) =
1√
2

[
χ+1/2(1)χ−1/2(2)− χ−1/2(1)χ+1/2(2)

]
.

In this state the two spins actually are antiparallel, or opposite, as we say. This state is
called the singlet spin state.

6.1.2 Atoms

a. Atoms without electron-electron interaction

Let us for a moment neglect the repulsion between the electrons, and let us also for simplicity
suppose that the nucleus is at rest. (The latter is an excellent assumption for a heavy atom.)
Then the Hamiltonian for an atom with atomic number Z is

Ĥ =
Z∑
k=1

[
− h̄2

2m
∇2
k −

Ze2

4πε0

1

rk

]
.
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Because this Hamiltonian consists of independent additive contributions, the Schrödinger
equation Ĥψ(r1, . . . , rZ) = Eψ will have solutions in terms of products of one-particle states:

ψn1l1m1(r1)ψn2l2m2(r2) · · ·ψnZ lZmZ
(r1).

Here, the one-particle states ψnlm(r) are solutions of the Schrödinger equation for an electron
in the Coulomb potential −Ze2/4πε0r. The ground state for this atom (the state with the
lowest possible total energy) is obtained by letting the electrons occupy the one-particle
states with the lowest energies, with two electrons with opposite spins in each orbital.

Here we remember that the spectrum of the Coulomb potential is simple, as shown in
the figure. We also remember that the degeneracy of level number n is n2.

Fig. 1 One-particle states in the Columb potential.

This way we have two electrons in the lowest level, 8 in level no 2, etc, and 2n2 in level
no n. Thus, in a world with no repulsion between the electrons, atoms with Z = 2 (helium),
10 (neon), 28 (nickel), ... would be exceptionally stable. (To change the state we would have
to elevate an electron to the next level.)

As we all know, these elements are not the most stable ones. The reason of course is that
we can not neglect the repulsion between the electrons:

b. The effective potential

A given electron will in reality feel a potential V (r) which is weaker than the Coulomb
attraction from the nucleus, due to the repulsion from the other Z − 1 electrons. If we pull
this electron far out from the rest of the atom, it will “see” a net charge e and feel a net
attractive potential −e2/4πε0r, which is much weaker than the potential from the nucleus
alone, −Ze2/4πε0r.
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In order to improve on the above (unsuccessful) model, we now approximate the atom
as a system of Z independent electrons in an effective potential V (r).

The question is how to find this effective potential V (r), which in addition to the attrac-
tion from the nucleus shall take into account the average repulsion from the other electrons.
If electron number i is in a one-particle state (orbital) ψi(r), the corresponding charge density
−e|ψi(ri)|2 gives a contribution to the potential felt by the other electrons. The potential
felt by electron number k thus is the sum of the nuclear attraction and the repulsion from
the other electrons:

V (rk) = − Ze2

4πε0rk
+
∑
i( 6=k)

∫ e2|ψi(ri)|2

4πε0|rk − ri|
d3ri. (T6.8)

The wave function for electron number k thus satisfies a Schrödinger equation with the
following potential: [

− h̄2

2m
∇2
k + V (rk)

]
ψk(rk) = εkψk(rk). (T6.9)

Of course, from the outset we do not know the orbitals ψi in the expression for the
potential energy. So what we have to do is so seek a self consistent set of orbitals, so that
when they are inserted into the expression for the potential, they reproduce themselves as
solutions. In practice, such a selfconsistent set of orbitals is found by iteration: A “start
potential” is chosen. Using this potential, a set of orbitals is calculated. From these orbitals
a new and improved potential is calculated (based on the Z states with lowest energies), and
then used to obtain improved orbitals, etc. this procedure is repeated until a self consistent
solution is obtained. In order to simplify the calculations, the efffective potential is averaged
over angles in each step of the iteration. This calculation scheme is called the Hartree
method.

The Pauli principle is taken into account in that all the electrons are in separate one-
particle states (two in each orbital, with opposite spins). In the scheme described above,
we have “forgotten” to antisymmetrize with respect to interchange of particle ccordinates.
This can be done, and then results in somewhat modified equations which are known as the
Hartree-Fock equations.

The main point in these methods is that we are describing the atomic structure in terms
of orbitals based on a spherically symmetric effective potential V (r). As you will understand,
the detailed form of this potential (for a given atom) can only be found by the use of a fairly
complicated numerical procedure. However, some of the main features of such potentials can
be deduced rather easily:

With the (approximately) spherical effective potential, an electron will at a distance r
from the nucleus feel the Coulomb force from the nuclear charge Ze and from that part of the
“electronic cloud” which is inside a sphere with radius r. For large r, the total charge inside
this sphere is approximately equal to Ze− e(Z − 1) = e. So, for large r the nuclear charge
is almost completely “shielded” by the other Z − 1 electrons. If our electron moves inwards
towards the nucleus, it will experience a force which gradually approaches the unscreened
Coulomb force due to the nucleus, −Ze2/(4πε0r

2). Thus we can state that for large r the
effective potential is approximately given by

V (rk) ≈ −
e2

4πε0rk
.
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For small r, close to the nucleus, on the other hand, it follows from (T6.8) that

V (rk) ≈ − Ze2

4πε0rk
+

e2

4πε0

∑
i 6=k

∫ |ψ(ri)|2

ri
d3ri = − Ze2

4πε0rk
+

e2

4πε0
(Z − 1) 〈 1/r 〉 ,

where 〈 1/r 〉 is the average of 1/r for the other electrons. Note that the (constant) second
term on the right side corresponds to the work done by electron number k against the
repulsive force from the other electrons if it travels from r =∞ to r = rk ≈ 0.

Since the effective potential deviates from the pure 1/r form of the Coulomb potential,
we can also state that the l-degeneracy will disappear, as discussed in Lecture notes 5. Thus
the energy levels Enl will depend both on n and l. We use the same notation ns, np, nd, . . .
for the levels as before. The ordering of these levels is not obvious. The positions of the
lowest levels are shown in figure 2. We note that the principal quantum number n alone
does not specify the energy, as it does for the hydrogen atom. The quantum number n now
stands for l + 1 + nr, where the radial quantum number nr is the number of nodes of the
radial function. As mentioned in Lecture notes 5, it turns out that the energy increases with
l for a fixed n.

Fig. 2 Sequence of orbitals.

Note that the 4s level not only is lower than 4p and 4d, but is even slightly lower than 3d.
Similarly the 5s level is slightly lower than 4d and 4f . In fact, 4f is even higher than 6s.

A small exercise: In the treatment of hydrogenlike atoms, we usually take the
nucleus to be pointlike, calculating with a perfect Coulomb potential. Why is this
a very good approximation, that is, why is the finite size of the nucleus of so little
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importance in atomic physics? [Hint: The nuclear radii are given approximately
by A1/3 · 10−15 m, where A is the nucleon number. Is it very probable to find an
electron inside the nuclear radius, or what do you think? Note that “outside”
the nucleus, the electron “sees” the field of a point charge.]

c. Electron configurations

The electron configuration of the ground state of an atom follows from the above sequence
of energy levels, and is shown for the first 20 elements in the table below. The number of
electrons in each level is shown as an upper index, so that 3s2 means that there are two
electrons in the 3s orbital.

A small exercise: Two neutral atoms have the electron configurations

1s22s22p63s23p64s13d5 and 1s22s22p63s23p64s23d104p65s24d2.

What are the atomic numbers, and which elements are these? [See, e.g., Zum-
dahl.]

Z Configuration

1 H 1s1

2 He 1s2

3 Li 1s22s1

4 Be 1s22s2

5 B 1s22s22p1

6 C 1s22s22p2

7 N 1s22s22p3

8 O 1s22s22p4

9 F 1s22s22p5

10 Ne 1s22s22p6

Z Konfigurasjon

11 Na 1s22s22p63s1 ≡ [Ne]3s1

12 Mg 1s22s22p63s2

13 Al 1s22s22p63s23p1

14 Si 1s22s22p63s23p2

15 P 1s22s22p63s23p3

16 S 1s22s22p63s23p4

17 Cl 1s22s22p63s23p5

18 Ar 1s22s22p63s23p6

19 K 1s22s22p63s23p64s1

20 Ca 1s22s22p63s23p64s2

The maximal number of electrons in a given level nl is 2(2l + 1); this is due to the m-
degeneracy 2l + 1 (which is common for all spherically symmetric potentials) and an extra
factor 2 corresponding to the two spin directions. Elements for which all these degenerate
states are occupied (that is, elements with “closed sub-shells”) are specially stable, because
the energy difference to the next level is pretty large.

Based on this qualitative discussion we can understand some of the most important
properties of the periodic system, like: (i) Elements with similar electron configurations
for the most energetic levels have similar chemical properties, (ii) Noble gases (apart from
helium) have a filled outer p-shell. Becase the energy difference to the next d or s level is
large, the electron configuration is not easily changed, and (iii) The elements with the largest
chemical activity are those with one loosely bound (valence) electron in addition to filled
shells, or elements which lack one electron in the outer shell.

In addition to this crude picture there are details, like the fact that an atom with two
outer p-shell electrons prefers that these occupy two different p orbitals. We like to think
that this is because the average distance between the electrons is largest when they occupy
two different orbitals. (Carbon is an example.)
Some comments:
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• The sizes of the atoms are not very different. (See e.g. Zumdahl.) This is due to the
fact that when Z increases, and more orbitals are filled, the size of a given orbital (like
those in the 2s and 2p subshells) shrinks. Cf the hydrogenlike atom, for which the size
of an orbital scales with the factor 1/Z.

• The ionization energy (the energy required to remove one electron from the atom)
does not vary terribly much for the different elements. It lies in the range 5–15 eV.
However, there are some differences: large ionization energy for noble gases, small
ionization energy for alkali metals, with one valence electron outside closed shells.

• There is no limitation in principle on the number of sub-shells and orbitals that could
be occupied by electrons. The reason that there are only about one hundred stable
elements is that nuclei with larger Z are not stable.

• Last but not least, it should be noted that quantum mechanics gives a complete descrip-
tion, both qualitatively and quantitatively, of the chemical properties of the elements
and their spectra.

6.2 The periodic system

Let us consider more closely

6.2.1 The build-up of the elements

Helium (Z = 2)

In the ground state, both electrons occupy the 1s orbital. To satisfy the Pauli principle, the
electrons have opposite spins. We note that the 1s orbital (also called the 1s shell or the
K-shell) is now filled. This electron configuration is denoted by 1s2. Symbolically:

The ionization energy (that is, the energy which is rquired to remove one electron, also called
the first ionization potential) is very large, 24.6 eV. Helium therefore (practically speaking)
does not react (form compunds) with other atoms. It is the least reactive of all elements,
occurs as a one-atomic gas, and condenses at a temperature as low as 4.2 K.

With one electron removed the helium ion is a hydrogenlike atom, where the electron has
the ground-state energy

−1
2
(2α)2mc2 ≈ 4 · (13.6 eV) = −54.4 eV.
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This means that the average binding energy of the two electrons in the neutral helium atom
is

1
2
(24.6 + 54.4)eV = 39.5 eV.

The fact that this average binding energy lies between the binding energies of hydrogen (13.6
eV) and He+ (54.4 eV) is not very strange. If we follow one of the electrons and remember
the above discussion of the “central-field approximation”, then this electron will “see” a
force which is for small r approximately equal to the Coulomb force from the nucleus (with
a charge 2e). For large r, the nuclear charge is partly shielded by the charge of the other
electron, and our electron will feel the force from a charge ≈ 2e− e = 1e. “On the average”
each of the electrons will thus roughly speaking feel that they are moving in the field of an
“effective” charge which lies somewhere between 2e and 1e. Based on the formula for the
energy of a hydrogenlike atom, we can define an “effective charge number” Zeff by setting

39.5 eV = 1
2
(Zeffα)2mc2.

The result, Zeff ≈ 1.7, is a rough measure of how much the two 1s electrons shield for each
other.

Lithium (Z = 3)

Two of the three electrons here fill the K-shell (1s). According to the exclusion principle,
the third electron then has to go to the next lowest energy level, where it occupies one of
the eight states of the L-shell (n = 2). The L-shell contains two sub-shells, the 2s orbital
(l = 0) with two states, and the three 2p orbitals (l = 1) with six states. For hydrogen the
two 2s states and the six 2p states were degenerate (l-degeneracy). For heavier atoms, where
the effective potential deviates from the Coulomb form (1/r), there is no l-degeneracy, and
the energies Enl in general increase with l. In the ground state of Li, the third electron will
therefore choose to be in a 2s state, so that the configuration of the ground state is 1s22s:

The figure shows the radial densities P rad
nl (r), for the two electrons in the K-shell and for

the 2s and 2p states. These radial densities are qualitatively similar tho those of the corre-
sponding states of hydrogen, but the “scale” is of course diminished. The two 1s-electrons
in the K-shell of litium “see” an effective charge somewhere between 2 and 3, so that the
“radius” of this K-shell is between 2 and 3 times smaller than the “radius” of the 1s orbital
of hydrogen.
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The sum of the radial densities of the 2s and 1s states gives the total radial electron density.
As you can see, the 2s density overlaps with that of the K-shell. Therefore, the notion of
“shells” should not be taken too literally.

The ionization energy required to remove the 2s electron turns out to be 5.4 eV. Repeating
the rough argument above, we can then state that this electron experiences an effective
attractive charge Zeff given by

5.4 eV = 1
2
(Zeffα)2mc

2

22
, that is, Zeff ≈ 1.26.

The moral is that when the last electron (here number 3) is forced by the Pauli principle to
recide alone in an outer shell (here the L-shell), then the “overlap” with other shells is fairly
small, so that the effective charge Zeff and hence the binding energy are small.

The modest ionization energy of 5.4 eV implies that the lithium atom easily “gives away”
the 2s electron. The ionization energy of the next electron (the so-called second ionization
potential), on the other hand, is very high, 75.6 eV, that is, even higher than the first
ionization potential of helium, which was 24.6 eV. (Note that the Li+ ion is distingushed
from the helium atom only by an extra proton charge in the nucleus.) Chemically, lithium
therefore behaves as an element with valence 1.

A small exercise: What is the binding energy of the electron in the Li++ ion?
[Hint: Li++ has only one electron.]

Beryllium (Z = 4)

Here the configuration is 1s22s2. The ionization energy (the first ionization potential) is
9.3 eV, which is what is required to remove one electron. To remove one more costs an
additional 18.2 eV. Thus the average binding energy of the two 2s electrons is about 13.7
eV. This corresponds to an average charge number slightly larger than 2. Again we can
state that the two electrons will partly shield the nucleus for each other, but this to a certain
extent compensated by by the fact that part of the time these electrons are moving so close
to the nucleus that they feel a charge larger than 2e. This explains why the effective charge
number here is larger than 2.
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Boron, carbon, nitrogen, oxygen, fluorine, neon (Z = 5− 10)

For these elements the six orbitals of the 2p subshell are filled successively. As Z is increased
from 5 to 10, these orbitals are gradually bound more closely to the nucleus. For neon, for
which both the K- and L-shells are completely filled, we find an ionization energy which is
almost as high as for helium (21.6 eV). This means that the neon atom does not give away
an electroin to other atoms. Like helium, it also rarely forms a negative ion (with an extra
electron). In other words, its electron affinity is very small. (An extra electron would have
to be in a 3s state. Since the 3s orbital overlaps very little with the K- and L-shells, an
extra (3s) electron would see an effective charge very close to zero.)

Flourine, on the other hand, with its nine electrons has one unoccupied 2p state in the
L-shell. This state overlaps considerably with the other five 2p states, in the sense that if
a tenth electron is placed in this state, it will experience a considerable effective attrative
charge. This is reflected by the fact that fluorine has a considerable electron affinity: When
a free electron is “captured” by a fluorine atom forming an F− ion, the energy released is
3.6 eV. Thus fluorine has the valence −1.

Oxygen, with the configuration 1s22s22p4, has two unoccupied 2p states. This atom
therefore readily forms compounds where it “borrows” two electrons from the other atoms
(example: H2O), and thus has the valence −2.

Note that the full shells of neon imply a spherically symmetric charge distribution.
For a subshell (n, l) where all the states are occupied we have∑

m

|ψnlm|2 = [Rnl]
2
∑
m

|Ylm(θ, φ)|2, (T6.10)

where the sum over m in general can be shown to be equal to (2l + 1)/4π, and
thus is independent of θ and φ.

A small exercise: Check that this is satisfied for the set Y10, Y1,±1,
and for the alternative set

Ypz ≡ Y10 =

√
3

4π

z

r
, Ypx =

√
3

4π

x

r
, Ypy =

√
3

4π

y

r
.

This is part of the reason that the central-field approximation (discussed in sec-
tion 6.1.2) works so well, particularly for heavy atoms, where the majority of the
electrons occupy filled shells.
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6.2.2 The periodic system. Chemical properties

Sodium, magnesium, aluminium, silicon, phosphorus, sulphur, clorine, argon (Z = 11− 18)

Here, the two 3s states and the 3p states are filled successively, in the same manner as the
filling of the 2s and 2p orbitals were filled for the sequence litium – argon. We can therefore
repeat the above story for these elements:

The eleventh electron of sodium sits alone in the M-shell (n = 3), in a 3s state. Sodium
therefore has valence 1, like lithium. For argon — the last elements in this sequence — the
sub-shells 3s and 3p are full, and we encounter yet another noble gas, with a particularly
stable electron configuration. Clorine and sulphur lack respectively one and two electrons
to have a full 3p shell, and therefore have respectively valences −1 and −2, like fluorine and
oxygen.

The chemical properties of the elements sodium – argon are in general very similar to
those of lithium – neon. The reason is that these properties are determined primarily by
the wave functions of the outer electrons. The outer parts of these wave frunctions for e.g.
lithium and sodium are very similar. [The 3s electron in sodium “sees” the effective charge
of the nucleus and the K and L electrons, which is close to 11e − 10e = e, that is, roughly
equal to the effective charge “seen” by the 2s electron in lithium.]

For increasing atomic numbers, one finds several such sequences of elements. Thus the
chemical properties vary in a periodic manner. This periodic pattern is called the periodic
system, and is shown in the table below. The columns in this table contain groups of
elements with similar chemical properties. The lines in the table are called periods.
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The periodicity is reflected in several properties of the atoms, like e.g. the atomic radii (see
Zumdahl), the electron affinity (Zumdahl) and the ionization energies. The figure shows the
ionization energy as a function of the atomic number Z.

Potassium (Z = 19), etc

For potassium, one would naively expect to find the last electron in a 3d orbital. However, as
shown in the table, it actually occupies a 4s state, so that potassium chemically belongs to
the group of alkali metals (lithium, sodium, potassium, rubidium, cesium, ..). The reason
is that the 3d orbitals, due to the high angular momentum (l = 2), in fact have a higher
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energy than the 4s level, even if the latter has a higher principal quantum number (n = 4,
and radial quantum number nr = n− l − 1 = 3).

The filling sequence of the periodic system is determined by the following schematic
disply of the energy levels:

Here, we note that the 4s, 3d and 4p orbitals can accomodate altogether 2 ·1+2 · (2 ·2+1)+
2 · (2 · 1 + 1) = 2 + 10 + 6 = 18 electrons. The successive filling of these states corresponds
to the fourth period of the periodic system. The fifth period has the same length, since it
corresponds to the successive filling of the 5s, 4d and 5p subshells. Period number six, on
the other hand, contains as many as 32 elements. This period corresponds to the successive
filling of 6s, 5d, 4f (the lanthanides) and 6p (altogether 2 + 10 + 14 + 6 = 32).
The periods of 2, 8, 8, 18, 18 and 32 are also evident in the diagram showing the ionizatin
energies.

Let us focus in particular on the ionization energies for the elements from
boron to neon, which correspond to the successive filling of the six 2p states.
Here, one would perhaps expect that the ionization energy should increase for
each step, being smallest for boron with only one 2p electron, and largest for
neon which has a full 2p shell. This is what we would expect naively, but as
shown in the diagram the steady increase is “broken” by oxygen, for which the
last electron is more weakly bound than we would expect. To understand this, we
take as our starting point boron, where the single 2p electron can choose between
six possible states — two spin directions combined with three spatial 2p orbitals,
which differ from each other only by their angular dependence. For the latter
we can use the three functions Ypx , Ypy and Ypz mentioned above. Which one
we choose is of no importantance physically, since the orientation of the axes is
quite arbitrary.
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Next let us consider carbon, with two 2p electrons, and imagine that one of
these chooses a state with the orbital angular function Ypz . The question then
is: Which state will the other 2p electron choose? If we think a little beyond
the central-field approximation, and consider the Coulomb repulsion between the
two electrons, it seems clear that the electron will find it an advantage to choose
one of the other orbitals, e.g. a px orbital. The two electrons will then on the
average be farther away from each other than thay would be if they were both
in the same orbital ψ2pz (with opposite spins). The “moral” is as always: The
ground state is the configuration with the lowest possible total energy.

Following the same line of thought, we would expect that the three 2p elec-
trons of nitrogen choose one orbital each (ψ2px , ψ2py and ψ2pz), and that turns
out to be the case. 1

For the next element, oxygen, we have four 2p electrons, three of which can of
course choose to be in separate 2p orbitals. The fourth electron, however, has to
be in the same orbital as one of the first three. Between these two electrons in the
same orbital we must assume that the repulsion is somewhat larger than between
electrons in different orbitals. This will increase the total energy a little more
than in the previos steps, and possibly is the explanation of the fact that the
ionization energy of oxygen is slightly smaller than for nitrogen; cf the diagram.

Based on these arguments we can also try to understand the structure of
H2O. Oxygen lacks two electrons to have a full 2p shell. Suppose that the two
unoccupied states in the 2p subshell is one in 2px and one in 2py. In forming the
water molecule, the oxygen atom tries to fill these vacancies by “borrowing the
two electrons of the two hydrogen atoms (at least part of the time). From this
argument, we should expect a structure where the two protons and the oxygen
nucleus make an angle close to 90 degrees. Experimentally this angle is about
104.5 degrees.

1At the same time it turns out that the three spins of the 2p electrons are parallel. Thus, it is an
experimental fact that the atoms in the ground state prefer a maximal resulting spin, This is one the
so-called Hund’s rules. Illustration for nitrogen:
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This deviation can be understood from the fact that the two protons, which part
of the time are “stripped” of their electrons, experience repulsion. The total
energy will therefore be minimal when the angle mentioned is somewhat larger
than 90 degrees.

6.3 Molecules and solids

Molecules and solids are stable configurations of two or more atoms. From chemistry we
know that the about one hundred elements can be combined to a vast number of molecules,
with different composition, form, size and other properties. These molecules are the building
blocks of innumerable inorganic and organic compounds.

The study of molecules raises many interesting questions: What makes the atoms stay
together? Should we consider the molecule as an aggregate of atoms, or is it more fruitful to
consider it as a collection of nuclei and electrons, where an electron is free to move anywhere
in the collective field from the nuclei and the other electrons.

The answer to the last question os both yes and no. Thus, when e.g. two atoms form a
two-atomic molecule, we make no big mistake in assuming that the inner electrons of each
atom are so strongly bound to their respective nuclei that their states are approximately the
same as when the two atoms are separated. For the outer electrons, however, this picture
becomes wrong. For these we have to take into account that they are moving in the combined
field of two ions lying fairly close together. The wave functions (molecular orbitals) for
these outer electrons therefore become very different from atomic orbitals.2

We shall see that these differences for the outer electrons also answers the first question,
about what binds together the atoms, which from the outset are neutral particles. The
binding mechanisms can be divided crudely into two types, ionic binding and covalent
binding.

6.3.1 Ionic binding

Ionic binding typically occurs in salts like NaCl (common kitchen salt) and LiF (litium fluo-
ride). To understand why a sodium atom and a clorine atom find it energetically favourable

2In principle, all the electrons move in molecular orbitals, as we shall see in the “chemical part” of this
course. But as mentioned above, this is most important for the outer electrons, and one makes no big mistake
by neglecting it for the inner electrons.
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to form a molecule, we shall try to apply classical electrostatic energy considerations, where
our starting point is a neutral sodum atom isolated by a large distance from a neutral clorine
atom.

We remember that clorine is one electron short of having a full 3p shell (M-shell), while
sodium has a single electron in the M-shell. It costs only 5.1 eV (the ionization energy) to
remove this electron from the isolated sodium atom. This electron can be offered to the
clorine atom, which gladly accepts it and “pays” 3.8 ev for it. (This means that the 3.8 eV
is released when the free electron and the clorine atom form a Cl− ion. This is the electron
affinitry of clorine.) Thus the net cost of changing the two isolated neutral atoms into two
isolated ions is 5.1 eV − 3.8 eV=1.3 eV, when the distance R between them is kept large.

This expense is compensated, and more than that, if we let the two ions (Na+ and Cl−)
merge into a molecule: With an experimental equilibrium distance of R0 ≈ 2.5 Å between
the two nuclei, the energy released because of the Coulomb attraction will be of the order of

V (∞)− V (R0) =
e2

4πε0R0

=
h̄2

2ma2
0

2a0

R0

≈ 13.6 eV · 2 · 0.53

2.5
≈ 5.8 eV.

This simple stimate indicates that the net energy released in the formation of an NaCl
molecule from the two neutral atoms is approximately 5.8 eV − 1.3 eV=4.5 eV.

Experimentally, one finds that the binding energy is 3.6 eV. The main reason that the
above estimate does not quite agree with the experimental value lies in what happens when
the two ions (which at large distances are spherically symmetric) come into contact with
each other and come close to the equilibrium distance. Then the two “electron clouds”
start to “overlap”. Because of the Pauli principle, some of the electrons are then pushed
away from the region of overlap. Otherwise the electron density in this overlap region would
become higher than in the neighbourhood. The elctrons which are pushed away, must find
a new place, farther away from the nuclei than they would otherwise prefer. 3 This costs
energy. As a result, the total force between the two ions no longer is given by the Coulomb

3This can be compared with what happens when two soap bubbles come into contact (without merging
into a single bubble); then the radii increase, because the total volume is approximately constant.
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force (−e2/4πε0R
2), but decreases towards zero when R decreases towards the equilibrium

distance R0, and even becomes repulsive if we try to make R smaller than R0. A reasonably
realistic potential corresponding to this force is shown in the figure. (See the curve marked
Na+ +Cl−.)

6.3.2 Covalent binding

The most prominent form of covalent bindings is that found in the so-called homonuclear
molecules, like H2, O2, N2 etc. Here, the two atoms take part in the binding on an equal
footing. Ionic binding is therefore completely excluded in these cases.

We shall try to understand the nature of the covalent binding by considering the simplest
of all the examples, which is that of the hydrogen molecule ion H+

2 , composed of two protons
and one electron.

A simple way of considering this binding is to think of the H+
2 ion as a proton (p2) bound

to a hydrogen atom (p1, e
−). If we start out with the proton p2 and the hydrogen atom very

far away from each other, there will then be a negligible force between them, because the
hydrogen atom is neutral and spherically symmetric (so that it has e.g. no dipole moment).
If we let the proton p2 approach the atom, however, we understand that the electric field sur-
rounding p2 will polarize the hydrogen atom, meaning that the electron e− is pulled slightly
towards p2, while the proton p1 is pushed slightly away. On the average, the attractive
force on e− therefore becomes slightly larger than the repulsive force on p1. Thus we get a
resulting attraction between the proton p2 and the hydrogen atom, analoguous to the force
between a point charge and an electric dipole. This force increases with decreasing distance,
also because the polarization of the atom increases. This increase continues until p2 enters
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the “electron cloud” of the hydrogen atom. Then the repulsion between p1 and p2 will at last
become so large that the resulting force becomes zero. The equilibrium distance between the
two protons turns out to be 1.06 Å, and the binding energy is 2.65 eV (which is the energy
required to remove p2 from H+

2 again).
At this equilibrium distance, we must expect to find a certain enhancement of the prob-

ability density of the electron (and hence also of its “charge density”) in the region between
the protons. Thus, in a way it is the electron that keeps the two protons together.

To improve on this semiclassical description, we have to treat the problem using quantum
mechanics. Instead of talking about a hydrogen atom and a proton, it is then most rewarding
to regard the problem as one in which the electron is moving in the total potential due to
the two protons:

V (r) = − e2

4πε0

(
1

r1

+
1

r2

)
.

Suppose that the protons are kept at rest at a fixed distance R. By solving the time-
independent Schrödinger equation for the electron, it is then possible to find the energy for
a given type of wave function. This energy will depend on R. The total energy of this
three-particle system then is

Etot(R) = E(R) +
e2

4πε0R
,

where the last term represents the repulsion between the two protons. If this sum has a
minimum for a certain distance R0, and if this minimal value Etot(R0) is smaller than -13.6
eV (which is the energy of the electron in the isolated hydrogen atom), then we have a stable
state for H+

2 .
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To actually solve the Schrödinger equation for the potential V (r) above is fairly com-
plicated. Presently we must therefore content ourselves with a qualitative discussion. If
we choose our coordinate system as suggested above, with the two protons on the y-axis,
equally far away from the origin, we understand that the potential will be symmetric with
respect to the xz-plane (which is perpendicular to the paper plane). The figure on the left
above shows how V (r) = V (x, y, z) then varies along the y-axis. (In units of e2/(4πε0R) the
potential along the y-axis is given by −1/|y/R + 0.5| − 1/|y/R − 0.5|.) The dashed lines
show the separate contributions from the two protons. The solid lines show the resulting
potential, which is seen to be significantly deeper than the contribution from either of the
protons. The figure on the right shows equi-potential curves in the yz-plane. By rotating
these around the y-axis, we obtain equi-potential surfaces.

The states with the lowest energies in this potential will have Ly = 0, so that they are
rotationally symmetric about the y-axis. Because the potential is symmetric with respect
to the xz-plane, such a rotationally symmetric state must then be either symmetric or
antisymmetric with respect to the xz-plane. This is illustrated in the figures below, which
suggest how the wave functions (that is, the molecular orbitals) for the lowest symmetric
and the lowest antisymmetric state behave along the y-axis, for two different proton-proton
distances R.

The “contour maps” on the right in these figures illustrate the behaviour of the wave functions
in a plane through the y-axis. Note that the probability of finding the electron in the region
between the two protons is largest for the symmetric state (because the antisymmetric is
zero in the xz-plane, which is then a nodal plane for this state).
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The curves in the diagram below show the electron energy E(R) and the total energy
Etot(R) as functions of the distance R between the two protons. For the symmetric state one
finds that Etot has a minimum of −16.3 eV for R = R0 = 1.06 Å, in agreement with the
eksperimental results. Remembering that the energy of the electron in the isolated hydrogen
atom is −13.6 eV, we understand that this result implies that the binding energy of H+

2 is
2.65 eV (which is the value mentioned above);

p+ H→ H+
2 + 2.65 eV.

For the antisymmetric state, on the other hand, one does not find a minimum. This simply
means that an electron in such an antisymmetric state is not able to keep the three particles
in H+

2 together; the antisymmetric molecular orbital is a non-bonding orbital.

At the equilibrium distance R0 = 1.06 Å(≈ 2a0), the repulsion between the two protons
corresponds to a positive potential energy of 13.6 eV. What still makes H+

2 more stable
than an isolated hydrogen atom and a proton, is that the energy ES of the electron in the
symmetric molecular orbital is as low as −29.9 eV.

This is more than twice as low as in the limit R→∞. In this limit, E, 〈K 〉 and
〈V 〉 are the same as for the electron in the isolated hydrogen atom, namely E = −13.6
eV, 〈K 〉 = −E = 13.6 eV and 〈V 〉 = 2E = −27.2 eV. (Note that this holds both
for the symmetric and the antisymmetric state, in the limit R → ∞.) It can be shown
that the relations 〈K 〉 = −E and 〈V 〉 = 2E hold also at the equilibrium distance,
R = R0 ≈ 1.06 Å. Thus we can state that when R is decreased from ∞ to R0, then 〈V 〉
has “grown” from 2 · (−13.6 eV)= −27.2 eV to 2 · (−29.9 )eV= −59.8 eV (and also the
kinetic energy 〈K 〉 has in fact increased, from 13.6 eV to 29.9 eV). This strong increase
of 〈V 〉 takes place because the electron here is moving in the much deeper total potential
from the two protons (see the potential figure above). Note also that in the symmetric state
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a considerable fraction of the “probability cloud” is found in the region between the two
protons, where the electron feels the attraction from both protons.

The conclusion is that the covalent binding is due to the fact that the resulting potential
is so deep that the energy (of the bonding molecular orbital) becomes more than low enough
to compensate for the repulsion between the nuclei. Based on these considerations for H+

2 , we
can also understand qualitatively the binding in the neutral hydrogen molecule, H2. Here,
the exclusion principle allows both electrons to be in the symmetric (bonding) molecular
orbital, with opposite spins. This gives a stronger binding than in H+

2 , with an equilibrium
distance R0 ≈ 0.74 Å and a binding energy which is almost twice as large:

H+H→ H2 + 4.48 eV.

More generally, we can state that the covalent binding between two atoms (with one
unpaired electron each) is caused by the two electrons sharing a molecular orbital, with
opposite spins.

A small exercise: Consider an H+
2 -like system, where one electron is mov-

ing in the potential from two protons (p1 and p2) which we imagine are bee-
ing kept fixed at a distance R. Let ψ1 and ψ2 be 1s orbitals (hydrogen or-
bitals) centered respectively around p1 and p2, so that (K̂ + V1)ψ1 = EH

1 ψ1 and
(K̂ + V2)ψ2 = EH

1 ψ2. Here, V1 corresponds to the Coulomb force between the
electron and p1 (and V2 corresponds to the Coulomb force between the electron
and p2), and EH

1 ≈ −1
2
α2mec

2(≈ −13.6 eV).

a. First, suppose that the distance R between p1 and p2 is much larger than the
Bohr radius a0, and argue that the linear combinations ψ± ≡ (ψ1 ± ψ2)/

√
2 are

approximate eigenfunctions of the Hamiltonian Ĥ = K̂ + V1 + V2 for the H+
2 -

like system. Hint: Show that Ĥψ± ≈ EH
1 ψ±, because V2ψ1 and V1ψ2 both

are small when R is large.

b. Then suppose that R is forced to be much smaller than a0, so that the
system becomes approximately hydrogenlike, with a “nucleus” with charge 2e.
What is then the ground-state energy?

c. Suppose now that R is arbitrary, and imagine a coordinate system with the z-
axis along the line connecting p1 and p2 and with the origin at the midpoint of this
line. Explain why L̂z, Ĥ and the parity operator P all commute. Hint: Convince
yourself that the potential V = V1 + V2 is independent of the azimuthal angle
φ.
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d. Show that the linear combinations ψ± above are eigenfunctions of both P
and L̂z and state what the eigenvalues are.

In a two-atomic molecule consisting of two different atoms, one of these can be more
attractive for the bonding electrons than the other. There is therefore not always a sharp
distinction between pure covalent bindings (like those in H2, O2, etc) and pure ionic bindings
(like that in NaCl).

It should also be noted that atoms with several unpaired electrons can form compounds
with several covalent bonds. An example is N2, where the three unpaired electrons of the
nitrogen atom allows the molecule to form three bonding pairs, in three different molecular
orbitals. This molecule therefore is very strongly bound. Another example is oxygen. This
atom has two unpaired electrons, which can take part in two covalent bonds, like those found
in H2O.

As already discussed, this leads to e definite geometry for the water molecule. A similar
effect is observed for the ammonia molecule NH3, where the three protons and the nitrogen
nucleus form a pyramid, as indicated in the figure.

This geometry can be “understood” starting with the three orbitals ψ2px , ψ2py and ψ2pz

of nitrogen. The reason that the angles of the molecule are larger than 90 degrees again is
that the three protons, which part of the time are “stripped” of their electrons, repulse each
other. The “moral” is as always that a molecule in its ground state chooses a configuration
that minimizes the energy.

A third example is methane, Ch4, which is treated in one of the exercises. Here, each of
the four hydrogen electrons shares a molecular orbital with a carbon electron. It turns out
that the configuration which minimizes the energy contains four molecular orbitals which
have a certain similarity with the the four sp3 orbitals of the 2p level of hydrogen (studied in
the exercise). In this configuration, the “equilibrium positions” of the four protons constitute
a regular tetrahedron, with the characteristic angles of 109.5 degrees:
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This type of “directed” chemical bonding is characteristic for many carbon compounds (like
e.g. diamond; see below).

This form of “directed” bonding does not occur when the binding is pure ionic. An
example is magnesium cloride, MgCl2, which can be regarded as Cl−Mg++Cl−, where all the
three ions have full shells and therefore from the outset have spherical charge distributions.
When these ions form a molecule, we would expect that the two negative clorine ions prefer
to stay as far away from each other as possible, that is, to form a linear molecule. This is
what actaully happens.

In this chapter we have so far neglected the motion of the nuclei in the molecules. Firstly,
the molecules can vibrate around their equilibrium positions, which they are in fact obliged
to do, because of the uncertainty principle. For a two-atomic molecule we have seen that
the vibrational degree of freedom can be treated approximately as a harmonic oscillation;
cf the exercise where we found that the “amplitudes” of the vibration are small compared
to the equilibrium distances between the nuclei. For molecules containing more than two
atoms, there will be several vibrational modes (corresponding to stretching, bending, torsion,
etc). In addition the molecules can of course rotate, when in the gaseous phase. Also the
rotational degree of freedom is quantized; cf the quantization of the rigid rotator.

6.3.3 Binding in solids

In solids, we can distinguish between four main types of binding: molecular binding, ionic
binding, covalent binding and metal binding.

Molecular binding occurs in compunds where the molecules retain most of their indi-
viduality and interact only very weakly with neighbour molecules. This requires that the
molecules have zero electric dipole moment and no unpaired electrons which could give rise
to covalent bonds. Examples are the noble gases (with one-atomic “molecules”) and com-
pounds like CH4, Cl2, I2, CO2 etc, which all occur as gases at normal temperature and
pressure. The bindings are so weak that the boiling and melting points lie close to the the
absolute zero. Most extreme in this respect is helium, which has a boiling point of 4.2 K,
and which does not freeze at all, not even at zero degrees Kelvin. To obtain solid helium we
need a pressure of 20 atmospheres at T = 0.

To understand that there can be any force at all between these molecules, we must take
into account that the motion of the electrons cause fluctuations of the charge distributions.
These fluctuations will give rise to fluctuating electric dipole moments (with zero average).
These dipole moments will polarize the neighbour molecules, and cause an attractive so-
called van der Waals force between the molecules. This force is very weak and decreases
with the distance as R−7. This type of binding is also called a van der Waals binding.

Ionic binding occurs e.g. in kitchen salt, NaCl. The crystal then consists of a densely
packed structure of alternating Na+ and Cl− ions, which from the outset have spherical
“charge clouds”. The ions therefore are packed together much like two kinds of spheres,
where each ion tries to be surrounded by as many ions of the other kind as possible, and as
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closely as possible. What is the most stable structure (geometry) depends on the relative
size of the two ion types. Ionic bindings are very strong, corresponding to high melting
temperatures. Because of the filled electronic shells there are no free electrons. These salts
therefore are electric insulators.

Covalent binding occurs e.g. in diamond, where each carbon atom forms four covalent
bonds with neighbour atoms. As shown in the figure, we again have the tetrahedral structure,
where each carbon atom is bound to four neighbours.

This binding is very strong, and makes diamond a very hard material, with an extremely
high melting point. “Covalent” compounds are electric insulators, because all the outer
electrons are “confined” in their bonds.

Metal binding occurs in its most typical form in the alkali metalls Li, Na, etc. As we
remember, these have one loosely bound (valence) electron, which is easily released. In the
metal, the positive ions form a crystal structure, while the valence electrons move more
or less as free particles inside the metal. (It is common to call the collection of valence
electrons an almost “free electron gas”.) This way the “free” electrons have much place at
their disposal, like particles in a macroscopic box. Many of these electrons can then have
rather low kinetic energies, and this is possibly part of the explanation of the fact that the
metal is more stable (has a lower total energy) than the collection of isolated metal atoms.
We note that the metal binding is analogous to the covalent binding, in the sense that the
valence electrons are shared by all the atoms of the crystal.

The “freedom” of the valence electrons means that the metal has a high electric conduc-
tivity. The valence electrons are therefore also called conductance electrons.


