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To be read along with chapter 2 in Hemmer, or selected sections from Bransden
& Joachain.

Lecture notes 2

2. Fundamental principles
Chapter 2 in this course — Fundamental principles — is covered by “Lecture
notes 2”, which you are now reading, together with chapter 2 in Hemmer’s book.
Most of this stuff is also covered in the book by Bransden & Joachain.

In this chapter, we formulate the basic principles of quantum mechanics and
introduce some concepts and mathematical methods and remedies which are
much used in this theory.

Some of this will in the beginning appear to be somewhat abstract and difficult
to understand. To make it more concrete and easier to grasp, we start with a
concrete example of a quantum-mechanical system, the simplest example of them
all in fact. This is the system where a single particle is moving in an infinitely
deep one-dimensional potential well, also called “particle in a box”.

This example is not only very simple, but also a very important example in
quantum mechanics. You will profit very much studying it thorougly.

The sections marked by *** are not parts of the courses FY1006/TFY4215.

2.1 Particle in a box

2.1.a Outline of the problem

two impenetrable walls potential diagram

This system consists of a particle with mass m moving between two impenetrable walls. The
potential (the potential energy) is zero between the walls and infinite outside the well:

V (x) =

{
0 for 0 < x < L,
∞ for x < 0 and x > L.
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For this so-called one-dimensional box potential we neglect the motion in the y and z direc-
tions. The classical expression for the energy then is

E = K + V =
p2
x

2m
+ V (x).

According to Schrödinger’s recipe (see section 1.7.a in Lecture note 1), this classical energy
expression corresponds to an energy operator (Hamiltonian)

Ĥ = K̂ + V (x) =
p̂2
x

2m
+ V (x) = − h̄2

2m

∂2

∂x2
+ V (x).

We want to find all the stationary solutions of the Schrödinger equation,

ih̄
∂Ψ(x, t)

∂t
= ĤΨ(x, t)

(
the time-dependent
Schrödinger equation

)
, (T2.1)

that is, all soulutions on the form

Ψ(x, t) = ψ(x)e−iEt/h̄. (T2.2)

Inserting (T2.2) into (T2.1) we then get the following equation for the spatial part of the
wave function ψ(x):

Ĥψ(x) = Eψ(x), or[
− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x).

(T2.3)

This is Schrödinger’s time-independent equation in one dimension.
This equation tells us that the spatial part ψ(x) of the stationary solution (T2.1) must be

an eigenfunction of the Hamiltonian operator Ĥ. Thus, our task is to find all such energy
eigenfunctions.

For x < 0 and for x > L, where the potential is infinite, these energy eigenfunctions
must all be equal to zero. It can be shown that this follows from (T2.3). Later we shall also
see from this equation that the energy eigenfunctions must be continuous for all x.

2.1.b Energy quantization

For 0 < x < L the potential is equal to zero, and (T2.3) takes the form

ψ′′ =
2m

h̄2 [V (x)− E]ψ = −2mE

h̄2 ψ.

Here, ψ′′ is the curvature of ψ. The relative curvature thus is

ψ′′/ψ = −2mE

h̄2 .
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For E < 0 we thus have ψ′′/ψ > 0, and ψ must curve (bend) outwards from the x axis

(actually as a linear combination of sinhκx and coshκx, where κ =
√
−2mE/h̄2). But then

it is impossible to satisfy the continuity conditions ψ(0) = ψ(L) = 0. This shows that
negative energy eigenvalues do not exist for this potential, as we also expect from classical
considerations.

For E = 0 we have ψ′′ = 0, so that ψ(x) = Ax+B. The continuity condition ψ(0) =
ψ(L) = 0 then gives ψ(x) = 0, which is of course totally useless as an energy eigenfunction
(cf the probability interpretation of the wave function). So here we get a surprise compared
to classical mechanics: Quantum mechanics (the Schrödinger equation) does not allow the
particle to be at rest between the two walls; the kinetic energy has to be positive.

For E > 0, the eigenvalue equation (T2.3) takes the form

ψ′′ = −2mE

h̄2 ψ ≡ −k2ψ, k ≡ 1

h̄

√
2mE.

The general solution now is sinelike with wave number k:

ψ(x) = A sin kx+B cos kx

(
E =

h̄2k2

2m

)
.

The continuity conditions give

ψ(0) = B = 0 and ψ(L) = A sin kL = 0.

(Here, A must be different from zero.) The condition sin kL = 0 means that kL is an
integer multiple of π, and implies that ψ(x) inside the box consists of an integer number
of half wavelengths (half periods of the sine). Thus we arrive at the following surprising
conclusion: The wave number k and the energy are quantized:

kn = n
π

L
, En =

h̄2k2
n

2m
=

h̄2π2

2mL2
n2, n = 1, 2, · · · . (T2.4)

We shall see that energy quantization is characteristic for all bound states. This example
shows that the quantization follows from the fact that the Schrödinger equation is a wave
equation; it is due to the wave nature of the particle.
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The ground state (per definition the state with the lowest energy) is as we see a half-wave,
with energy

E1 =
h̄2π2

2mL2
.

This is the lowest energy that the particle between the walls is allowed to have. We note
that this minimal energy increases with decreasing mass, and that it also increases with
decreasing box width L. So the smaller space we give the particle, the higher energy it is
forced to have, because of its wave nature. I use to call this “quantum wildness”; the smaller
the cage, the wilder the tiger becomes.

2.1.c Zeros (nodes), symmetry and curvature properties

We note that the number of zeros (excluding the two for x = 0 and x = L) is n−1; the
ground state has no zero, the first excited state has one, and so on. This is a characteristic
property of bound states in one-dimensional potentials; the number of zeros increases with
the energy. This is also easily understood from the expression for the relative curvature of
the energy eigenfunctions,

ψ′′

ψ
= −2m

h̄2 [E − V (x)] = −2mE

h̄2 :

Increasing (kinetic) energy means larger ψ′′/ψ, that is faster curvature and hence more zeros.
We should note that the box potential is symmetric with respect to the midpoint of

the potential, x = L/2. This actually is the reason that ψ1, ψ2, ψ3, ψ4 etc are respectively
symmetric, antisymmetric, symmetric, antisymmetric etc with respect to the midpoint. We
shall see later that this is a general property of energy eigenstates in a symmetric one-
dimensional potential.

2.1.d Normalization, probability density

If we want to interpret |ψ(x)|2 as the probability density, so that |ψ(x)|2dx is the probability
of finding the particle in the interval [x, x+ dx], we must require that

∫ L

0
|ψ(x)|2dx = 1.

(
normalization
condition

)
, (T2.5)

The figure shows |ψ1(x)/A|2 = sin2 πx/L = 1
2
(1− cos 2πx/L).

probability density for the ground state



FY1006/TFY4215 — Lecture notes 2 5

Here we see that the probability density for the ground state contains one period of the
cosine, which therefore does not contribute to the integral. The same holds for the first
excited state, which contains two periods, etc. Thus we can conclude that the average over
the box of sin2 nπx/L equals one half, as indicated in the figure. The normalization condition
therefore gives

1 = |A|2
∫ L

0
sin2 nπx

L
dx = |A|2 · 1

2
· L =⇒ |A| =

√
2

L
.

We then obtain a normalized wave function by setting

A = eiβ
√

2

L
,

where the phase β can be chosen arbitrarily. A simple choice is β = 0. This freedom in the
choice of a phase factor holds in general when we want to normalize a wave function. This
means of course that the factor eiβ in the wave function doesn’t mean anything physically; it
drops out in the calculation of quantities like the probability density |ψn(x)|2 and expectation
values like 〈

xk
〉
ψn

=
∫
xk|ψn(x)|2dx.

With the above choice, the normalized stationary states and the energy eigenfunctions of
the box are

Ψn(x, t) = ψn(x)e−iEnt/h̄, ψn(x) =

√
2

L
sin knx, kn =

nπ

L
, En =

h̄2k2
n

2m
, n = 1, 2, · · · .

(T2.6)
Note that the constant in front is not determined by the eigenvalue equation; we find it
using the normalization condition.

A small exercise: As we have seen, the energy eigenfunctions alternate be-
tween being symmetric and antisymmetric wit respect to the “symmetry point”
of the box, which is the midpoint x = L/2. The symmetry properties of the
eigenfunctions ψ1, ψ2 and ψ3 are obvious in the diagrams on page 3 but, if you
choose a different coordinate system, with the origin (x′ = 0) in the middle of
the box, then the symmetry properties will become clear also in the expressions
ψ1(x′), ψ2(x′) and ψ3(x′) for the three eigenfunctions.
a. Does the change of coordinate system imply any change of the wave numbers
k1, k2 and k3 for the three eigenfunctions?
b. Find the expressions ψ1(x′), ψ2(x′) and ψ3(x′), and check if the symmetry
properties emerge as they should. [Hint: cos kx′ and sin kx′ are respectively
symmetric and antisymmetric.]

2.1.e Orthogonality

It is easy to see that for example ψ1(x) and ψ2(x) are orthogonal. With this we mean that

〈ψ1, ψ2 〉 ≡
∫ L

0
ψ∗1 (x)ψ2(x)dx = 0.
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Later we shall see that this can be generalized:

〈ψn, ψk 〉 ≡
∫ L

0
ψ∗n (x)ψk(x)dx =

{
1 for n = k
0 for n 6= k

}
≡ δnk. (T2.7)

When the energy eigenfunctions are both orthogonal and normalized, we say that they are
a set of orthonormalized functions.

2.1.f Discussion

Classically, a particle with energy E will travel back and forth between the two walls with

a velocity vx = ±
√

2E/m. There is a striking contrast between such a classical state of
motion and the properties of the stationary states we have studied above. We note that the
probability densities of the stationary states,

|Ψn(x, t)|2 = |ψn(x)|2, (T2.8)

are time independent, and also symmetric with respect to the midpoint of the box. This
implies that the expectation value of the position x is equal to L/2. Later we shall see that
the expectation values of px (and hence of vx) are equal to zero for all the stationary states.
So there there really is “something stationary” about the stationary states.

Then we must of course ask if quantum mechanics only desribes states where “nothing
happens”? The answer is no. This is because the stationary states are not the only solutions
of the Schrödinger equation. Because this equation is both linear and homogeneous, we can
easily convince ourselves that

If Ψa(x, t) and Ψb(x, t) are two
solutions of the time-dependent
Schrödinger equation, then also the
linear combination

Ψ(x, t) = c1Ψa(x, t) + c2Ψb(x, t)

is a solution. Here, ca and cb are ar-
bitrary complex coefficients.

(
superposition

principle

)
(T2.9)

The most general wave function for the particle in the box therefore is

Ψ(x, t) =
∞∑
n=1

cnΨn(x, t) =
∞∑
n=1

cne
−iEnt/h̄ψn(x). (T2.10)

Since this wave function does not have the form (T2.2), it describes a non-stationary state.
By the use of the orthonormality condition (T2.7) it can be shown that the normalization
condition for this non-stationary state is 1

1 =
∫

Ψ∗(x, t)Ψ(x, t)dx = · · · =
∞∑
n=1

|cn|2. (T2.11)

1The product of the two sums Ψ(x, t) and Ψ∗(x, t) contains a number of cross terms which integrate to
zero because of the orthogonality. The integrals over the remaining terms, the “square” terms, essentially
are the normalization integrals.
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For such a non-stationary state, the expectation values of the position and the momentum
will depend on the time, so in such a state things “happen”.

The Matlab program “box non stationary.m” shows an example, with a 50/50
superposition of the stationary solutions of the ground state and one of the
excited states:

Ψ(x, t) =
1√
2

Ψ1(x, t) +
1√
2

Ψn2(x, t).

You can choose the quantum number n2 yourself when running this program.
The animation shows how the probability density |Ψ(x, t)|2 and the expectation
value 〈x 〉 of the position “move” as functions of time.

With a superposition of several stationary states (with a suitable choice of the
coefficients cn) we may also construct a wavefunction Ψ(x, t) with the form of a
wavepacket which mimics the classical motion of a particle which bounces back
and forth between the two hard walls. You will find such an animation in the
Matlab program “wavepacket in box”.

Some of the “moral” of this discussion is: Since the most general quantum-mechanical state
is a superposition of stationary solutions, the starting point for the treatment of any system
is to find all possible energy eigenstates (and hence the stationary solutions) for the system.

Another point: Some people worry about the zeros (nodes) in the wave func-
tions and the probability densities of the stationary states. Thus the first excited
state, for example, has a zero at the midpoint of the box: — “How can the par-
ticle manage to move from the left half of the box to the right half when Ψ2(x, t)
and |Ψ2(x, t)|2 are equal to zero at the midpoint?” — Answer: Rewriting the
sinus as sin k2x = (eik2x− e−ik2x)/2i, we see that the stationary state Ψ2 can be
written as a “50/50” superposition of two de Broglie waves:

Ψ2(x, t) =

√
2/L

2i

(
ei(k2x−E2t/h̄) − ei(−k2x−E2t/h̄)

)
.

This means that the zero is caused by destructive interference between the two
de Broglie waves. The zero thus is a consequence of the wave nature, and is as
natural as the zeros encountered in the double-slit experiment.

2.2 Basic postulates (Hemmer 2.1, B&J)

After the introductory chapter and the above particle-in-a-box example, we shall now try
to formulate a set of postulates, upon which quantum mechanics can be built as a theory.
These postulates play a role analogous to that of Newton’s laws in classical mechanics.
Which postulates to choose, and how to formulate them, is to some extent a matter of taste.
In this course we follow Hemmer. Similar formulations can be found in B&J. Here we add
the following comments:
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2.2.a Postulate A (The operator postulate)

In trying to learn quantum mechanics, it is important that we learn to distinguish on one
hand between the physical system and the quantities which can be measured (the observ-
ables of the system) — and on the other hand the concepts and the mathematical objects
we use in the theretical quantum-mechanical description.

Physical system: Theoretical object:

observabel F ⇐⇒ linear operator F̂

The operator postulate states that

To each observable physical quantity F there corresponds
in quantum-mechanical theory a linear operator F̂ .

(T2.12)

In this course we stick to the so-called position-space formulation of quantum mechanics.
For a single particle with mass m moving in a potential V , we postulate in this formulation
the following correspondence between observables and operators:

Physical observable mathematical operator

x, y, z x̂ = x etc

px p̂x =
h̄

i

∂

∂x

x2 x2

Kx =
p2
x

2m
K̂x =

p̂2
x

2m
= − h̄2

2m

∂2

∂x2

E =
p2

2m
+ V (r) Ĥ =

p̂2

2m
+ V (r) = − h̄2

2m
∇2 + V (r)

L = r× p L̂ = r× p̂ = r× h̄

i
∇

Lz = xpy − ypx L̂z = xp̂y − yp̂x

As demonstrated here, the recipe for finding the Hamiltonian and the momentum operator
is: Express the classical observables in terms of position and momentum variables. Then
replace the momentum variables with the corresponding momentum operators.
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This recipe can be used also for more complex systems, where both the energy and other
variables may be functions of several position and momentum variables; see e.g. section 2.1
in Hemmer. (For charged particles in a magnetic field, this recipe has to be modified.)

How these quantum-mechanical operators are used will become clear as the course pro-
ceeds. We have already seen some of them in action. In chapter 1 we saw for example that
the de Broglie wave was an eigenfunction of the momentum operator p̂x. and in the box
example above, both K̂x and the one-dimensional variety of the Hamiltonian Ĥ were used.

2.2.b Postulate B (The wave-function postulate)

The state of a system is described, as completely as
possible, by the wave function Ψ(qn, t). The time
development of the wave function (and hence of the
state) is determined by the Schrödinger equation,

ih̄
∂Ψ

∂t
= ĤΨ,

where Ĥ is the Hamiltonian of the system.

(T2.13)

Thus, the Schrödinger equation plays the role as a quantum-mechanical equation of motion.
This equation determines Ψ(qn, t) uniquely when Ψ(qn, t0) is specified at some initial time
t0. Clearly both terms of this equation are linear in Ψ. The superposition principle (T2.9)
follows because the Schrödinger equation is both linear and homogeneous.

The postulate above implies that the state of a system is completely specified if we know
the wave function. Both in this course and elsewhere in quantum-mechanical literature it
is common to call the wave function the state of the system. As an example we frequently
express ourselves as follows: “Suppose that the system is at t = 0 prepared in the state
Ψ(r, 0)”.

You should also note that the wave-function postulate implies that it is not possible to
obtain more information about a system than that which is contained in the wave function.
How this information is obtained from Ψ(qn, t) will be clarified as we proceed. Cf the next
postulate.

2.2.c Postulate C (Expectation-value postulate)

When a large number of measurements of an obser-
able F is made on a system which is prepared in a
state Ψ(q1, q2, · · · , qn, t) (before each measurement),
the average F of the measured values will approach
the theretical expectation value, which is postulated
to be

〈F 〉Ψ =
∫

Ψ∗F̂Ψ dτ,

where dτ = dq1dq2 · · · dqn and where the integration
goes over the whole range of each of the variables.

(T2.14)
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(Here, we are supposing that the wave function is normalized.) An alternative to repeating
the measurement a large number of times is to measure on a large number of identically
prepared systems. In both cases we use to say that we are measuring on an ensemble of
identically prepared systems (or for short: on an ensemble prepared in the state Ψ). Pay
notice to the position of the operator F̂ ; in the integrand above it acts to the right, on the
factor Ψ.

As an example, let the observable F be the position coordinate x. According to the
postulate, the expectation value of this observable is

〈x 〉Ψ =
∫

Ψ∗ xΨdτ =
∫
x|Ψ|2dτ.

This implies that |Ψ|2 is the probability density in “position space”. Thus Born’s probability
interpretation from 1926 is contained in the above postulate.

The expectation values of the relevant physical observables are some of the information
contained in the wave function, but not all. Thus, if we prepare for example the particle in
the box in one of the stationary states Ψn(x, t), the number

〈x 〉 =
∫ L

0
x|Ψn(x, t)|2dx =

∫ L

0
x|ψn(x)|2dx = L/2

only tells us that the average x of the measured values will approach the expectation value
when the number of measurements increases. But the wave function contains much more
information than that. For n = 1, e.g., the theory tells us that the distribution of a large
number of measured values will agree with the probability distribution |ψ1(x)|2 shown in the
diagram on page 4.

If we make only one measurement of the position x, it doesn’t help much to know the
theoretical probability distribution. In this case, our theory only tells us that x will lie
somewhere between the walls of the box. And the wave-function postulate tells us that it
is not possible to obtain more information about what this single measurement will show.
Thus, as we have stated before, quantum mechanics is a theory with a statistical character,
and breaks with our conceptions obtained from classical mechanics, where we are used to
think that the position can be predicted accurately by Newton’s laws, provided that the
initial conditions are specified.

A small exercise: What is the expectation value 〈 r 〉 of the position r (of the
electron) in the ground state ψ1(r) = C1e

−r/a0 (which was discussed at the end
of Lecture notes 1)? [Hint: The expectation value is the “point of gravity” of the
probability distribution |ψ1(r)|2, which is spherically symmetric.]

2.2.d Postulate D (Measurement postulate)

(i) The only possible result of a precise measurement
of an observable F is one of the eigenvalues fn of the

corresponding linear operator F̂ .

(ii) Immediately after the measurement of the eigen-
value fn, the system is in an eigenstate of F̂ , namely,
the eigenstate ψn corresponding to the measured
eigenvalue fn.

(T2.15)
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When there is only one eigenfunction Ψn with the eigenvalue fn,

F̂Ψn = fnΨn,

we say that this eigenvalue is non-degenerate. It then follows from (ii) that the state
immediately after the measurement is uniquely given by Ψn.

Note that (i) states that the measured result must always be one of the eigenvalues. Which
of these eigenvalues that are measured, and the probabilities of each of them, depend on the
state before the measurement. As an example, suppose that we prepare a non-stationary
box state as a superposition of the three lowest-lying stationary states:

Ψ(x, t) = c1Ψ1(x, t) + c2Ψ2(x, t) + c3Ψ3(x, t).

Then (as we shall soon see) a measurement of the energy can only give one of the three
results E1, E2 or E3. If the result is for example E2, the system will according to (ii) be left
in the state Ψ2 after the measurement. Here we see that the measurement changes the state
of the system. That a measurement changes the state of the system in this way, is in fact
more of a rule than an exception in quantum physics.

A new measurement of the energy (after the first measurement with the result E2) will
again give the result E2, and will thus according to (ii) not change the state. This is the
exception.

2.3 Hermitian and non-hermitian operators, commuta-

tors, etc

2.3.a Real expectation values demand hermitian operators

The operator F̂ representing a measurable quantity (an obsevable) F must be hermitian.
This is a mathematical property which ensures that the eigenvalues (which are possible
measurement results) are real, and also that the expectation values are real. Taking the
latter property as our starting point, we must require that

〈F 〉∗ = 〈F 〉 , that is,
∫

Ψ(F̂Ψ)∗dτ =
∫

Ψ∗F̂Ψdτ.

This should hold for all normalizable (square integrable) wave functions Ψ. In section 2.2,
Hemmer shows that this is equivalent to requiring that∫

(F̂Ψ1)∗Ψ2dτ =
∫

Ψ∗1 F̂Ψ2dτ, (T2.16)

for all square-integrable functions Ψ1 and Ψ2. When this condition is satisfied, we say that
the operator F̂ is per definition hermitian. Note that the operator F̂ acts on Ψ1 on the left
side of (T2.16) and on Ψ2 on the right side. If it is possible by mathematical manipulations to
move the operator from the former position to the latter, it then follows that it is hermitian.
We shall soon se that all the operators listed on page 8 have this property, and that this
implies that their eigenvalues are real. Yoe should memorize (T2.16), because it will turn
out to be very useful on many occations.
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2.3.b The adjoint, F̂ †, of the operator F̂

In order to be able to distinguish between hermitian and non-hermitian operators, we must
take the trouble to learn what is meant by the adjoint, Â† (expressed as “A-dagger”), of an
operator Â. This mathematical object is defined by the equation∫

(ÂΨ1)∗Ψ2dτ
def
=
∫

Ψ∗1 Â†Ψ2dτ, ∀ ( square-integrable) Ψ1 and Ψ2. (T2.17)

To understand the meaning of this definition, we can go straight to an example: The adjoint
of the operator Â = ∂/∂x, that is, (∂/∂x)†, is defined by

∫ (
∂

∂x
Ψ1

)∗
Ψ2dτ

def
=
∫

Ψ∗1

(
∂

∂x

)†
Ψ2dτ

Ahem.. Well, how do we find this adoint, (∂/∂x)† ? Answer: By taking the expression on
the left as our starting point, and manipulating mathematically in such a way that we end
up with differentiation of Ψ2 instead of Ψ1. The result of these manipulations will be an
operator acting on Ψ2, and this operator is per definition the adjoint of ∂/∂x. In this case,
the necessary manipulations are essentially limited to a partial integration:∫ ∞

−∞
(
∂

∂x
Ψ1)∗Ψ2dx =

[
Ψ∗1 Ψ2

]x=∞

x=−∞
−
∫ ∞
−∞

Ψ∗1
∂

∂x
Ψ2dx.

Here, the boundary term is equal to zero, because square-integrable functions must be zero
in the limit x→ ±∞. If our position space contains more variables (y and z in addition
to x), we can readily integrate also over y and z in the equation above, and thus we obtain
the general result:

∫
(
∂

∂x
Ψ1)∗Ψ2dτ =

∫
Ψ∗1 (− ∂

∂x
)Ψ2dτ

def
=
∫

Ψ∗1

(
∂

∂x

)†
Ψ2dτ.

Thus, from the definition it follows that the adjoint of the operatoren ∂/∂x is

(
∂

∂x

)†
= − ∂

∂x
.

This example should illustrate that the adjoint is in general not the same as complex conju-
gation. We also see that the operator ∂/∂x is not hermitian. This is because for a hermitian
operator F̂ , the result F̂ † of the manipulations must be identical to F̂ according to (T2.16).
We then say that F̂ is self-adjoint:

F̂ † = F̂ (self-adjoint=hermitian).

It is now a simple matter to check the hermiticity of our usual operators. The observable
x is represented by the operator x̂ = x (multiplication by x), the potential energy is
represented by the operator V (x), etc. It is easy to see that both of these are hermitian.
To be slightly more general, let us consider multiplication by a complex function g(x) (or a
complex constant c). We have∫

[g(x)Ψ1]∗Ψ2dτ =
∫

Ψ∗1 g∗(x) Ψ2dτ,
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that is,
[g(x)]† = g∗(x), and

c† = c∗ (c a complex constant).

(So in this case the adjoint is is the same as the complex conjugate). Since x and V (x) are
real, it then follows that

x† = x∗ = x,

[V (x)]† = V (x) (the potential energy),

To proceed, let Â and B̂ be two general operators. From the definition of the adjoint we
then have∫

[Â(B̂Ψ1)]∗Ψ2dτ =
∫

(B̂Ψ1)∗(Â†Ψ2)dτ =
∫

Ψ∗1 B̂†Â†Ψ2dτ
def
=
∫

Ψ∗1 (ÂB̂)†Ψ2dτ, (T2.18)

leading to the simple rule
(ÂB̂)† = B̂†Â†. (T2.19)

Using this rule, you can easily find the adjoint of a product of three operators, and so on.
Note that the order of operators is in general important. (The exception is when they
commute, meaning that their order is not important.) This rule can be used e.g. to show
that the momentum operators (and multipla of these) are hermitian:

p̂†x = (
h̄

i

∂

∂x
)† = (

∂

∂x
)†(
h̄

i
)† = − ∂

∂x
(
h̄

−i
) =

h̄

i

∂

∂x
= p̂x,

(p̂xp̂x)
† = p̂†xp̂

†
x = p̂xp̂x, etc.

Furthermore, it is easy to see that

(Â+ B̂)† = Â† + B̂†,

and then it is not difficult to see that also the Hamiltonian is hermitian, as we must of course
require for the operator representing the observable E = K + V :

Ĥ† =

[
p̂2
x

2m
+ V (x)

]†
= Ĥ.

A little exercise:
a1. How fast must |f(x)| approach zero when |x| → ∞ , if we want the function
f(x) to be sqare integrable (and hence normalizable in the usual sense), so that
the integral

∫∞
−∞ |f(x)|2dx exists?

a2. By a partial integration it can be shown that

∫ (
1

i

∂f

∂y

)∗
g d3x =

∫
f∗ 1

i

∂g

∂y
d3x

for all square-integrable complex functions f(x, y, z) and g(x, y, z). What is then
the adjoint of the operator 1

i
∂
∂y

? [Hint: Check the definition of the adjoint on

page 12.]
b. Show that the Laplace operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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is hermitian. [Hint: Use the formula (ÂB̂)† = B̂†Â† to find ( ∂
∂x

∂
∂x

)†.]
c1. Show that the operator xp̂x is non-hermitian.
c2. Show that the operator 1

2
(xp̂x + p̂xx) is hermitian.

2.3.c A little bit about commutators

As already mentioned, the order of operators is in general important, except when they
commute, that is, when their commutator is equal to zero. As you can see page 25 in
Hemmer or in section 3.3 in B&J, it is easy to show that

(xp̂x − p̂xx)F (x, y, z) ≡ [x, p̂x]F (x, y, z) = ih̄ F (x, y, z)

for for an arbitrary function F . The operator identitety

xp̂x − p̂xx ≡ [x, p̂x] = ih̄, (T2.20)

or more generally,
[xk, p̂l] = ih̄ δkl,

play central roles in quantum mechanics. In section 5.4 in B&J, it is shown how the com-
mutator [x, p̂x] = ih̄ can be used to prove Heisenberg’s uncertainty relation,

(∆x)ψ(∆px)ψ ≥ 1
2
h̄, ∀ square-integrable ψ. (T2.21)

The “moral” is that when the operators Â and B̂ (corresponding to the observables A and
B) do not commute, then the two observables can not have sharp values simultaneously.
This uncertainty relation can be generalized to

(∆A)(∆B) ≥ 1
2

∣∣∣〈 i[Â, B̂]
〉∣∣∣ , (generalized uncertainty relation). (T2.22)

Some simple rules of calculation for commutators:

[Â+ B̂, Ĉ + D̂] = (Â+ B̂)(Ĉ + D̂)− (Ĉ + D̂)(Â+ B̂)

= [Â, Ĉ] + [Â, D̂] + [B̂, Ĉ] + [B̂, D̂]; (T2.23)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

(T2.24)

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂.

The last two relations are easiest to check calculating backwards. It is also easy to show
Jakobi’s identity:

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0. (T2.25)
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Example 1

In order to check whether the angular-momentum operator L̂z = xp̂y − yp̂x is hermitian,
we can calculate its adjoint. Since x and p̂y are hermitian and commute, we find that L̂z is
self-adjoint,

L̂†z = (xp̂y − yp̂x)† = p̂†yx
† − p̂†xy† = p̂yx− p̂xy = xp̂y − yp̂x = L̂z,

that is, hermitian, as we must demand for an operator representing a physical observable.

Example 2

Using (T2.23) we can calculate the commutator between L̂x and L̂y:

[L̂x, L̂y] = [yp̂z − zp̂y, zp̂x − xp̂z]
= [yp̂z, zp̂x]− [zp̂y, zp̂x]− [yp̂z, xp̂z] + [zp̂y, xp̂z].

In the first commutator on the right, both y and p̂x commute with z (and with each other).
This way we find that

[yp̂z, zp̂x] = yp̂zzp̂x − zp̂xyp̂z = yp̂x(p̂zz − zp̂z) = yp̂x[p̂z, z] = −ih̄ yp̂x,

and furthermore that

[zp̂y, zp̂x] = 0,

[yp̂z, xp̂z] = 0,

[zp̂y, xp̂z] = ih̄ xp̂y.

In this manner we arrive at the so-called angular-momentum algebra:

[L̂x, L̂y] = ih̄L̂z,

[L̂y, L̂z] = ih̄ L̂x, (T2.26)

[L̂z, L̂x] = ih̄ L̂y.

Using these relations, it is easy to show that

[L̂2
x, L̂z] = L̂x[L̂x, L̂z] + [L̂x, L̂z]L̂x = L̂x(−ih̄L̂y) + (−ih̄L̂y)L̂x,

and similarly that
[L̂2

y, L̂z] = L̂y(ih̄L̂x) + (ih̄L̂x)L̂y,

while the commutator [L̂2
z, L̂z] is of course equal to zero. Altogether this gives

[L̂2, L̂z] = [L̂2
x + L̂2

y + L̂2
z, L̂z] = 0, q.e.d. (T2.27)

As we shall see later, this means that it is possible to find simultaneous eigenfunctions of
the operators L̂2 and e.g. L̂z. In such a state, the uncertainties of both observables L2 and
Lz are equal to zero. The “moral” is that the size (|L|) of the angular momentum L for a
particle can have a sharp value together with one of its components, e.g. Lz.
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On the other hand it follows from the angular-momentum algebra (T2.10) and the gen-
eralized uncertainty relation,

(∆F )Ψ(∆G)Ψ ≥ 1
2
|
〈
i[F̂ , Ĝ]

〉
Ψ
| ∀ (square-integrable) Ψ,

that the measurable components Lx, Ly and Lz of the angular momentum vector L of the
particle can not have sharp values simultaneously (because the operators do not commute).
This breaks with our classical-mechanical conceptions. Take for example the angular mo-
mentum of the earth with respect to the sun, L = r× p, which has both a well-defined size
and a well-defined direction (normal to the orbital plane). For the electron in the hydrogen
atom, this is not possible.

2.4 Eigenfunctions and eigenvalues

2.4.a The spectrum of an operator

We have already seen that the mathematical concepts eigenfunction and eigenvalue play
important roles in quantum mechanics. Hemmer gives in his section 2.4.1 a very concise
exposition of the central aspects, and a similar discussion can be found in sections 5.1–4 in
B&J, which you should study closely. Some comments :

1. In section 2.1 above we found that the spectrum (the possible eigenvalues) of the
Hamiltonian for the one-dimensional box is{

En =
h̄2π2

2mL2
n2

∣∣∣∣∣ n = 1, 2, 3, · · ·
}
.

We also found that the eigenfunctions corresponding to this discrete energy spectrum are
normalizable (to 1).

2. In an exercise we have already encountered the Hamiltonian

Ĥ = − h̄2

2m

∂2

∂x2
+ 1

2
mω2x2

of the one-dimensional harmonisc oscillator and two of its eigenfunctions with the corre-
sponding eigenvalues:

ψ0(x) = C0e
−mωx2/2h̄ (with E0 = 1

2
h̄ω) and ψ1(x) = C1x e

−mωx2/2h̄ (with E1 = 3
2
h̄ω).

We shall later see that these describe respectively the ground state and the first excited state
of the oscillator, and that the complete spectrum is{

En = h̄ω(n+ 1
2
)
∣∣∣ n = 0, 1, 2, · · ·

}
. (T2.28)

It turns out that all the corresponding eigenfunctions contain the same exponential factor
exp(−mωx2/2h̄), multiplied by a polynomial of degree n. These eigenfunctions therefore all
approach zero (more or less quickly) as x→ ±∞. Thus they are all normalizable to 1.
This property, of normalizability for bound-state wave functions, turns out to be general:

Eigenfunctions corresponding to discrete eigenvalues can always be normal-
ized to 1.

(T2.29)
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What happens if we try to solve the time-independent Schrödinger equationfor the
oscillator, ĤΨ = Eψ, for an energy E which is not equal to any of the eigenvalues
En = h̄ω(n+ 1

2
)? The answer is that the “solution” becomes infinite as |x| approaches

infinity. Such “solutions” do not qualify as eigenfunctions, neither from a mathematical
viewpoint nor from a physical one:

Only solutions of the eigenvalue equation which are normalizable (in a cer-
tain sense) are counted as eigenfunctions.

(T2.30)

3. As an example of an operator with a continuous eigenvalue spectrum, we may consider
the momentum operator p̂x = h̄

i
∂
∂x
. The eigenvalue equation then is

p̂xψp = pψp, or
dψ

dx
=
ip

h̄
ψp

(where other possible variables like y, z, t are kept fixed). Here, p is the eigenvalue. This
equation can be integrated:

dψp
ψp

=
ip

h̄
dx =⇒ lnψp = lnC +

ipx

h̄
=⇒ ψp(x) = Ceipx/h̄.

(We have in fact seen this momentum eigenfunction before, in the discussion of the de
Broglie waves in Lecture notes 1.) In this solution, the eigenvalue p can take any real value
p ∈ (−∞,+∞). Complex eigenvalues are excluded, because they will make |ψ(x)|2 infinite
either when x goes to +∞ or −∞. This is not acceptable for an eigenfunction. Thus we can
conclude that the momentum operator has a continuous real spectrum, from −∞ to +∞.

However, even for a real eigenvalue p the eigenfunction is not normalizable to 1; the
integral

∫∞
−∞ |ψp(x)|2dx does not exist, because |ψp(x)|2 = |C|2 is constant for all x. Later

we shall see that in this case we must use a different kind of “normalization”, the so-called
delta-function normalization. (This is the reason for the reservation “in a certain sense” in
(T2.30).)

We should also note that the momentum eigenfunction ψp(x) = Ceipx/h̄ — and
the corresponding de Broglie wave Ψp(x, t) = Cei(px−Et)/h̄ (with E = p2/2m)
— describes a particle with completely well-defined (sharp) momentum p =
pêx. This wave function extends over an infinite space, and therefor must be an
idealization. A real physical state must somehow be limited to a finite space and
be normalizable to 1. Then it can not have a completely sharp wave number.
This means that the momentum p = h̄k of a real physical state must always be
uncertain, at least to a small extent, seen from a mathematical viewpoint.

4. As discussed in Lecture notes 1 (and in an exercise) the Hamiltonian for an electron
(with charge −e) moving in an electrostatic potential U(r) = e/(4πε0r) is

Ĥ = − h̄2

2m
∇2 − e2

4πε0r
.

It turns out that this operator, which essentailly describes the hydrogen atom, for E < 0
has a discrete spectrum,

En = −1
2
α2mc

2

n2
, n = 1, 2, · · · .
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For n = 1 we have already found the corresponding energy eigenfunction, ψ = (πa3
0)−1/2e−r/a0 .

Both this ground state and the eigenfunctions belonging to the other discrete energy levels
are normalizable to 1 (square integrable), and describe bound states, in agreement with
(T2.29). We can also say that these states are localized, in the sense that they approach
zero more or less quickly for large r.

For E > 0 the energy is not quantized; we have a continuous spectrum extending from
E = 0 upwards. Thus, the Hamiltonian of this system has a mixed spectrum. The energy
eigenfunctions belonging to the continuous part of the spectrum are not localized ; they extend
over an infinite space (like the momentum eigenfunctions) and are not normalizable to 1.
For such unbound states one must again use delta-function normalization. In general, it
turns out that

For eigenfunctions corresponding to a continuopus (part of a) spectrum, one
must use delta-function normalization.

(T2.31)

2.4.b Eigenvalues as measured values

As explained in section 5.2 in B&J,

(i) The eigenvalues fn of a hermitian operator F̂ are real, and

(ii) in the corresponding eigenstate Ψn, the observable F with certainty has
the value fn.

(T2.32)

Comments:
(i) According to the measurement postulate, a measurement of F = fn will leave the

system in the corresponding eigenstate, given by

F̂Ψn = fnΨn,

where we remember that F̂ is hermitian, and therefore has real eigenvalues. We assume that
Ψn is normalized. The (real) expectation value of F then is equal to the eigenvalue:

〈F 〉Ψn
=
∫

Ψ∗n F̂Ψndτ =
∫

Ψ∗nfnΨndτ = fn

∫
Ψ∗nΨndτ = fn.

Thus the eigenvalue fn is real, and that is a relief (!), when we remember that this eigenvalue
is in fact a possible measurement result.

(ii) A new measurement of F (immediately after the first one, which left the system in
the state Ψn) will with certainty give F = fn once more. We can therefore state that in
the state Ψn the observable F has the sharp value fn. To prove this, we only have to show
that the uncertainty (the root-mean-square deviation from the expectation value fn) is
equal to zero:

(∆F )2
Ψn
≡
〈

(F − 〈F 〉Ψn
)2
〉

Ψn

=
〈

(F − fn)2
〉

Ψn

=
∫

Ψ∗n(F̂ − fn)2Ψndτ = 0, q.e.d.

(T2.33)
Here we have used the eigenvalue equation (F̂ − fn)Ψn = 0.
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2.4.c Orthogonality

An important rule, which will be used frequently in this course, is the following:

Two eigenfunctions Ψn and Ψm of a hermitian
operator are orthogonal if the eigenvalues fn
and fm are different. With this we mean that:

fm 6= fn =⇒
∫

Ψ∗mΨndτ = 0.

(T2.34)

The figure shows the eigenfunction products ψ∗1 (x)ψ2(x) and ψ∗1 (x)ψ3(x) for a particle in a
box. The product on the left is antisymmetric with respect to the midpoint (because ψ1 is
symmetric and ψ2 is antisymmetric), and then the orthogonality follows because we have an
antysymmetric integrand. The product on the right, on the other hand, gives a symmetric
integrand. In this case it takes a bit of calculation to show that the integral is actually equal
to zero. However, such explicit calculations are completely unnecessary. As you can see in
section 2.4.3 in Hemmer, or in 5.3 in B&J, it is straightforward to prove the general rule
above:

With F̂Ψn = fnΨn and F̂Ψk = fkΨk, it follows from the relation∫
(F̂Ψn)∗Ψkdτ =

∫
Ψ∗nF̂Ψkdτ,

valid for the hermiteian operator F̂ , that

0 =

∫
(F̂Ψn)∗Ψkdτ −

∫
Ψ∗nF̂Ψkdτ = (fn − fk)

∫
Ψ∗nΨkdτ, q.e.d.

2.4.d Orthogonalization using a “Complete set of commuting op-
erators”***2

As we all know, it happens that one or more eigenvalues are degenerate, meaning that
there is more than one eigenfunction having the same eigenvalue fn. An example is the first
excited energy level of the hydrogen atom, E2 = −1

2
α2mc2/4 : The number of independent

eigenfunctions for this level is four; we then say that the (degree of) degeneracy is 4.

2Sections marked by *** are not compulsory in FY1006/TFY4215. The present section can well be
skipped till after the treatment of the hydrogen atom.
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Now, these four wave functions, ψ1, ψ2, ψ3, ψ4, need not be orthogonal, even if they
are independent. At least, the rule (T2.34) does not ensure orthogonality in this case. In
such a case we would like to construct an orthogonal set, because as we shall see it is
an advantage with orthogonality. One way to achieve this is to use the so-called Gram-
Schmidt orthogonalization procedure, which will be discussed later.

Another way is to work with simultaneous eigenfunctions of a so-called complete set of
commuting operators. The hydrogen atom is well suited to illustrate this method. The de-
generacy of the hydrogen levels is partly due to the spherical symmetry of this problem. From
this symmetry it follows that the Hamiltonian Ĥ commutes with the angular-momentum op-
erator L̂ and with the square L̂2 of this operator. At the same time the components of L̂
commute with L̂2, but not with each other, as we have seen above. This means that the
operator set Ĥ, L̂2 and L̂z commute with each other. Then (as we shall see in chapter 4)
there exists a simultaneous set of eigenfunctions of these three operators. The bound states
(for E < 0) are the well-known eigenfunction set

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ),

which satisfy the eigenvalue equations
Ĥ

L̂2

L̂z

ψnlm =


En

h̄2l(l + 1)
h̄m

ψnlm,
n = 1, 2, 3, · · · ,
l = 0, 1, 2, , · · · , n− 1,
m = 0,±1, · · · ,±l.

Here we note that the energy is independent of the magnetic quantum number m, which
for a given angular-momentum quantum number l can take the values m = 0,±1, · · · ,±l,
altogether 2l + 1 values. This is the so-called m degeneracy, which is common for all spher-
ically symmetric potentials. Furthermore, the energy is also independent of l, which for a
given principal quantum number n can take the values l = 0, 1, 2, · · · , n− 1. This is the
so-called l degeneracy, which is characteristic for the 1/r potential.3 The total (degree of)
degeneracy for the energy level En then becomes

gn =
n−1∑
l=0

2l + 1 = 1 + (2 · 1 + 1) + (2 · 2 + 1) + · · ·+ (2 · (n− 1) + 1) = 1
2
n(1 + 2n− 1) = n2,

which is 4 for n = 2, 9 for n = 3, etc. The energy levels and the corresponding states
can be illustrated by the following level scheme:

3The 1/r form of the potential actually corresponds to a “hidden” symmetry, which causes the l degen-
eracy.
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You should note that all these states are orthogonal. This is because there is only one
eigenfunction ψnlm for each combination nlm of quantum numbers, and then it follows from
(T2.34) that we have an orthogonal set. More specifically, we can state that the ground
state ψ100 is orthogonal to all the excited states because the energy eigenvalues are different.
The same holds for any two states with different energies, as e.g. for the pair ψ200 and ψ300

and for the pair ψ210 and ψ310.
But what about eigenfunctions belonging to the same energy level, like e.g. the 2s state

ψ200 and the 2p states ψ21m, with m = 0,±1? The answer is that ψ200 is orthogonal to the
states ψ21m because the eigenvalues of L̂2 are different (respectively 0 and 2h̄2). Similarly,
the three states ψ211, ψ210 and ψ21−1 are orthogonal because they are eigenfunctions of L̂z
with different eigenvalues (respectively h̄, 0, and −h̄).

The “moral” is that the orthogonality of the n2 energy eigenfunctions with energy En is
ensured by the fact that they are simultaneous egenfunctions of Ĥ and a suitable additional
set of operators (here L̂2 and L̂z). If this set is chosen in such a way that there is only
one eigenfunction for each combination of eigenvalues, orthogonality is ensured by (T2.34).
We then say that this set of operators (here Ĥ, L̂2 and L̂z) constitute a complete set of
commuting operators. Another choice of operators (e.g. Ĥ, L̂2 and L̂x) can also be a
complete set of commuting operators. The simultaneous eigenfunctions of this set will be
linear combinations of the original set of eigenfunctions. (“Moral”: The gn eigenfunctions
with energy En are not unique.) Note also that the set Ĥ and L̂2 are not a complete set of
commuting operators.

A small challenge: (1) Find a complete set of commuting operators for the three-
dimensional harmonic oscillator (with V = 1

2
mω2r2). (2) Same for a two-dimensional

quadratic box.

2.4.e Wave functions (and other functions) as “vectors”
(Griffiths, ch. 3 and Appendix)

The notation ∫
Ψ∗nΨmdτ ≡ 〈Ψn,Ψm 〉

is used because the integral on the left is called the scalar product of the two functions Ψn

and Ψm. The notions “scalar product” and “orthogonality” are borrowed from the theory of
(abstract) vector spaces. Wave functions describing physically realizable states must must
be normalizable to 1, that is, they must belong to the class of complex, square-integrable
functions. These functions satisfy all the criteria which define an abstract vector space:

• The sum of two such (square integrable) functions is itself a (square integrable) function

• Addition of functions is commutative and associative [f + g = g + f ; (f + g) + h =
f + (g + h)]

• There exists a “null-function”, f ≡ 0

• Multiplication by a compleks constant gives a new function

etc. The list actually is a bit longer, but the message is already clear. The complex square-
integrable functions belong to a complex vector space, denoted by L2(−∞,∞) ≡ L2 in
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mathematics, and called a Hilbert space in physics. The dimension of this space is infinite,
because there are infinitely many linearly independent functions of this kind. 4

As scalar product (also called the inner product) of two complex functions f and g we
use

〈 f, g 〉 ≡
∫
f∗gdτ. (T2.35)

This is analoguous to the scalar productet of two ordinary (complex) vectors (which you
have possibly not used?), which in the physics literature is defined by

〈 a,b 〉 ≡ a∗·b ≡ a∗x bx + a∗y by + a∗z bz (T2.36)

With this definition the scalar product is linear in the second factor: When c is a complex
number, it follows from (T2.35) that5

〈 f, cg 〉 = c 〈 f, g 〉 , while 〈 cf, g 〉 = c∗ 〈 f, g 〉 .

Note that the scalar product is in general a complex number, and that

〈 f, g 〉∗ = 〈 g, f 〉 .

The length |a| of an ordinary complex vector a is defined as the root of the scalar product
〈 a, a 〉, so that

|a|2 = 〈 a, a 〉 = a∗·a = |ax|2 + |ay|2 + |az|2.
In a similar manner, we define the length ||f ||, also called the norm, of the “vector” f such
that

||f ||2 = 〈 f, f 〉 =
∫
f∗fdτ. (T2.37)

The norm of a normalized wave function Ψ thus is ||Ψ|| = 1. Given another function ψ̃
which is not normalized, we can construct a normalized version ψ as follows:

ψ =
ψ̃

||ψ||
=

ψ̃√〈
ψ̃, ψ̃

〉 .
This is analoguous to â = a/|a| being a unit vector.

A small exercise:
Find the norm ||e−x2/2|| of the function e−x

2/2, where x goes from −∞ to +∞.

Another exercise:
1. What are the scalar products 〈 êx, a 〉 and 〈 êy, a 〉 for the vector a = 3êx+2êy?
2. Let b = 3êx + 4iêy be a complex vector. What are 〈b,b 〉, 〈 a,b 〉 and 〈b, a 〉
? [Hint: Cf (T2.36). Answer: 25, 9 + 8i and 9− 8i.]

3. What is the length of b ? [Answer: ||b|| ≡ |b| =
√
〈b,b 〉 =

√
b∗·b = 5.]

4That the number of linearly independent square-integrable complex functions is infinite, can be under-
stood e.g. by considering the energy eigenfunctions ψn(x) of the harmonic oscillator as an example. We have
one such eigenfunction for each of the infinite number of eigenvalues, En = h̄ω(n+ 1

2 ). All these functions
are orthogonal and hence linearly independent according to (T2.34).

5One can just as well define the inner product in such a way that it is linear in the first factor. This
is commonly done in the mathematical literature. However, in quantum mechanics we use the definition
above: In the integral 〈 f, g 〉, the first factor is f∗.
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2.4.f The delta function and δ-function normalization

Dirac’s δ function

Dirac’s δ function is discussed in Appendix B in Hemmer’s book, and in Appendix A in B&J.
Here we summarize some of the most important properties. The δ ”function” is defined by
the property ∫ ∞

−∞
f(x)δ(x)dx = f(0) (T2.38)

for all functions which are continuous at the origin. The definition implies that δ(x) must
be equal to zero for all x 6= 0 and infinitely large for x = 0, in such a way that∫ ∞

−∞
δ(x)dx = 1. (T2.39)

By introducing x′ = −x as a new integration variable we understand that the function is
even,

δ(−x) = δ(x). (T2.40)

Introducing x′ = |a|x in the integral
∫
f(x)δ(ax)dx, we see that

δ(ax) = δ(|a|x) =
1

|a|
δ(x). (T2.41)

Other important properties are 6

∫ a+∆

a−∆
f(x)δ(x− a)dx = f(a), (T2.42)

f(x)δ(x− a) = f(a)δ(x− a), (T2.43)

xδ(x− a) = aδ(x− a). (T2.44)

The δ function is not a function in the strict sense of the word, but a so-called gen-
eralized function. We can consider it as the limit of a sequence of ordinary functions
δε(x),

δ(x) = lim
ε→0

δε(x), (T2.45)

where the width of the graph of δε(x) approaches zero, while the area under the graph is
equal to 1 the whole time. There of course exist many such sequences. A simple example is
a rectangular area of width ε and height 1/ε:

δ(x) = lim
ε→0

δε(x) = lim
ε→0

{
1/ε for |x| ≤ ε/2,
0 for |x| > ε/2.

(T2.46)

This is called a representation of the δ function. In this and other representations, it goes
without saying that the limit should be taken after the calculation of the integrals:

lim
ε→0

∫ ∞
−∞

f(x)δε(x)dx = f(0). (T2.47)

6Note that it is sufficient to integrate over a small interval containing the point where the δ function is
different from zero, which is the point where the argument is zero.
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It is easy to see that this condition is satisfied by (T2.46). Hemmer and B&J give several ex-
amples of such representations which all have this property. Here we shall focus in particular
on two, where the functions δε(x) are respectively

δε(x) =
1

2π

∫ ∞
−∞

eikx−ε|k|dk =
ε

π(x2 + ε2)

and

δε(x) =
1

2π

∫ 1/ε

−1/ε
eikxdk =

sin(x/ε)

πx
.

The areas under these curves are both equal to 1, and the “widths” approach zero as
ε→ 0, while the heights become infinite. The advantage of these two representations is
that we can in fact allow ourselves to take the limit ε→ 0 before the integration. Thus we
set

δ(x) =
1

2π

∫ ∞
−∞

eikxdk =
1

2π

∫ ∞
−∞

e−ikxdk. (T2.48)

We can call this a Fourier representation of the δ function, because it has the form of a
Fourier integral. Here, you may be frightened by the fact that this integral in fact does not
exist. However, it turns out that we may still work with this representation. In the end our
results will be correct.

A small exercise: Which δ function is represented by the integral

1

2π

∫ ∞
−∞

eik(x−a)dk ?

3 dimensions

In three dimensions the defining equation (T2.38) is replaced by∫ ∫ ∫
f(r)δ(r)d3r = f(0).

This is satisfied by
δ(r) = δ(x)δ(y)δ(z).

The charge density of a point particle with charge q placed at the point r = a is propor-
tional to such a δ function:

ρ(r) = qδ(r− a).

This illustrates in a concrete way what a three-dimensional δ function is.

δ-function normalization

We have already mentioned in (T2.3) that one must use δ-function ”normalization” for eigen-
functions corresponding to a continuous part of a spectrum. As an example we may consider
the momentum eigenfunctions ψp(x) = Ceipx/h̄. Since |ψp(x)|2 = |C|2, the normalization
integral clearly diverges. The momentum eigenfunctionen therefore is not normalizable in
the usual meaning of the word.
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What about orthogonality? Let us choose C = (2πh̄)−1/2 and calculate the scalar
product of ψp and ψp′ ,

〈ψp, ψp′ 〉 ≡
∫ ∞
−∞

ψ∗p (x)ψp′(x)dx =
1

2π

∫ ∞
−∞

e−ipx/h̄eip
′x/h̄d(x/h̄) =

1

2π

∫ ∞
−∞

ei(p
′−p)ydy.

Here we have introduced y = x/h̄ as a new integration variable. Comparing with (T2.48)
we see that the result is

〈ψp, ψp′ 〉 ≡
∫ ∞
−∞

ψ∗p (x)ψp′(x)dx = δ(p′ − p).
(

δ-function
normalization

)
(T2.49)

With the above choice of normalization constant,

ψp(x) =
1√
2πh̄

eipx/h̄

we thus get a scalar product between ψp(x) and ψp′(x) which simply is δ(p′ − p) = δ(p− p′).
This is called δ-function normalization (although the function is not normalizable in the
proper sense).

2.5 Expansion in eigenfunctions (Cf 2.5 in Hemmer, 3.7 in B&J)

2.5.a The notion of a “complete set” (or basis)

We have just seen that square-integrable functions are vectors in an infinite-dimensional
vector space. Also the term basis (or comlete set) is borrowed from the theory of vector
spaces. Let us illustrate this by considering an ordinary two-dimensional vector space.

Here, the arbitrary vector a may very well be expanded in a basis consisting of the vectors
a1 and a2, which are two arbitrary, linearly independent vectors. However, it is much more
practical to an orthonormalized basis set â1 and â2,

〈 âi, âj 〉 = δij, i, j = 1, 2. (T2.50)

The unit vectors â1 and â2 are constructed as linear combinations of the two
independent vectors a1 and a2, using the following recipe:

â1 =
a1

|a1|
, â2 =

a2 − 〈 â1, a2 〉 â1

|a2 − 〈 â1, a2 〉 â1|
.

Note that 〈 â1, a2 〉 â1 is the component of a2 along â1. The numerator in the last
expression therefore is the component of a2 normal to â1. The denominator takes
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care of the normalization. This recipe can also be used to orthogonalize functions,
and is then called the Gram–Schmidt-orthogonalization procedure:

A small exercise: Suppose that ψ̃1, ψ̃2 and ψ̃3 are three linearly independent
(but not necessarily normalized and orthogonal) functions. From these functions
we can construct three orthonormalized linear combinations. One way of doing
this is as follows:

ψ1 =
ψ̃1

||ψ̃1||
, ψ2 =

ψ̃2 −
〈
ψ1, ψ̃2

〉
ψ1

||ψ̃2 −
〈
ψ1, ψ̃2

〉
ψ1||

, ψ3 =
ψ̃3 −

〈
ψ1, ψ̃3

〉
ψ1 −

〈
ψ2, ψ̃3

〉
ψ2

||ψ̃3 −
〈
ψ1, ψ̃3

〉
ψ1 −

〈
ψ2, ψ̃3

〉
ψ2||

.

Thes are obviously normalized. Check that they are also orthogonal:

〈ψ1, ψ2 〉 = 0 = 〈ψ1, ψ3 〉 = 〈ψ2, ψ3 〉 .

With the basis (T2.50), the expansion formula for the arbitrary vector a is

a = a1â1 + a2â2 =
2∑
i=1

aiâi. (T2.51)

The advantage of the orthonormalized basis becomes more clear when we calculate the
projections of the vector a onto the two basis vectors:

〈 â1, a 〉 = 〈 â1, a1â1 + a2â2 〉 = a1,

〈 â2, a 〉 = 〈 â2, a1â1 + a2â2 〉 = a2,

or in one sweep:

〈 âi, a 〉 =

〈
âi,
∑
j

ajâj

〉
=
∑
j

aj 〈 âi, âj 〉 =
∑
j

ajδij = ai, i = 1, 2. (T2.52)

Thus, the expansion coefficients a1 and a2 simply are equal to the projections of the vector
a onto the respective basis vectors.

By inserting the coefficients we thus find that the arbitrary vector a can be expanded as:

a = 〈 â1, a 〉 â1 + 〈 â2, a 〉 â2 =
∑
i

〈 âi, a 〉 âi. (T2.53)

All this is of course completely trivial, but it is included here because exactly the same
tecqnique can be used for functions, as we shall see below.

2.5.b Complete sets of functions

As explained in Hemmer and in 3.7 in B&J (and in section 2.4.d above), we can consider
normalized wave functions as vectors in an infinite-dimensional complex vector space. A
basis for this space must therefore contain an infinite number of functions.

Strangely enough, it turns out that the eigenfunction sets of our hermitian operators all
are complete sets of functions or bases. An example of such a hermitian operator is the
Hamiltonian of the one-dimensional oscillator,

Ĥ = − h̄2

2m

∂2

∂x2
+ 1

2
mω2x2.
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As stated above (although still not proved) this operator has the discrete and non-degenerate
spectrum

En = h̄ω(n+ 1
2
), n = 0, 1, 2, · · · .

We shall later see that each of the corresponding orthonormalized eigenfunctions,

ψn(x) =
(
mω

πh̄

)1/4 1√
2nn!

Hn

(
x
√
mω/h̄

)
e−mωx

2/2h̄ ( 〈ψk, ψn 〉 = δkn), (T2.54)

goes as a Hermite polynomialHn (of degree n) in the dimensionless variable x
√
mω/h̄ ≡ ξ,

multiplied by the Gauss function exp(−mωx2/2h̄) ≡ exp(−ξ2/2) (which guarantees nor-
malizability). Note that there is an infinite number of these functions.

It can be proved mathematically that this set of functions is complete. With this we
mean that an arbitrary square-integrable function g(x) can be expanded in this set,

g(x) =
∞∑
n=0

cnψn(x). (T2.55)

This expansion is analoguous to the expansion of the vector a in terms of the two unit vectors
â1 and â2. Thus, in the formula above the normalized eigenfunction ψn(x) plys the role of
a “unit vector”.

In analogy with the preceeding section, the orthonormality of these “unit vectors” makes
it easy to determine the expansion coefficients cn. These simply are the projections of the
function g(x) onto the respective “unit vectors” ψn(x),

cn = 〈ψn, g 〉 ≡
∫ ∞
−∞

ψ∗n (x)g(x)dx, (T2.56)

in analogy with ai = 〈 âi, a 〉 . To remove any doubts, let us calculate these projections.
The projection of g(x) onto ψn(x) is

〈ψn, g 〉 =

〈
ψn,

∑
k

ckψk

〉
=
∑
k

ck 〈ψn, ψk 〉 =
∑
k

ckδnk = cn, q.e.d. (T2.57)

In analogy with the formula a =
∑
i aiâi =

∑
i 〈 âi, a 〉 âi, we thus get the following expan-

sion formula for the arbitrary function g(x):

g(x) =
∑
n

cnψn(x) =
∑
n

〈ψn, g 〉 ψn(x). (T2.58)

Expansion formula =⇒ completeness relation

The fact that the arbitrary function g(x) can be expanded in this way, implies that the basis
set of eigenfunctions ψn(x) has a special property; they satisfy the so-called completeness
relation. This is easily shown by rewriting the formula above slightly: By writing out the
scalar product as an explicit integral (with the integration variable x′) and interchanging the
order of summation and integration we find that

g(x) =
∑
n

(∫ ∞
−∞

ψ∗n (x′)g(x′)dx′
)
ψn(x) =

∫ ∞
−∞

(∑
n

ψn(x)ψ∗n (x′)

)
g(x′)dx′. (T2.59)
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This may be compared with the relation (cf (T2.42))

g(x) =
∫ ∞
−∞

δ(x− x′)g(x′)dx′. (T2.60)

Since these relations hold for all continuous (and square-integrable) functions g(x), the two
formulae can only be consistent if the set of eigenfunctions satisfy the so-called complete-
ness relation: ∑

n

ψn(x)ψ∗n (x′) = δ(x− x′). (T2.61)

Completeness relation =⇒ expansion formula

We have just derived the completeness relation from the expansion formula. But it is also
possible to go the opposite way: By replacing the δ function in the identity (T2.60) by
the left side of (T2.61), we find that the expansion formula follows from the completeness
relation:

g(x) =
∫ ∞
−∞

δ(x− x′) g(x′) dx′ =
∫ ∞
−∞

(∑
n

ψn(x)ψ∗n (x′)

)
g(x′) dx′

=
∑
n

(∫ ∞
−∞

ψ∗n (x′)g(x′)dx′
)
ψn(x)

≡
∑
n

〈ψn, g 〉 ψn(x) ≡
∑
n

cnψn(x). (T2.62)

Thus the expansion formula and the completeness relation are completely equivalent.
For the oscillator eigenfunctions, the completeness can as mentioned be proved. Such

proofs exist also for the eigenfunctions of many of the other hermitian operators used in
quantum mechanics, but not for all. For a hermitian operator for which a proof has not been
established, it is customary in quantum mechanics to assume that the set of its eigenfunctions
is complete. This can be regarded as another postulate.

A small exercise: Assume that we have a one-dimensional box potential, equal
to zero for |x| < 1

2
L and infinite for |x| > 1

2
L. The energy eigenfunctions for

this potential can (for |x| < 1
2
L) be written on the form

ψn(x) =


√

2
L

cos(nπx/L) for n = 1, 3, 5, · · · ,√
2
L

sin(nπx/L) for n = 2, 4, 6, · · · .

The figure shows a function g(x) which is equal to zero for |x| > 1
2
L and equal to

A(1
2
L−|x|) for |x| < 1

2
L. Why are the coefficients c2, c4, c6 etc in the expansion

formula g(x) =
∑∞
n=1 cnψn(x) all equal to zero?
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In section 2.5.1 in Hemmer you can see that the formalism is essentially the same for all
complete sets corresponding to discrete spectra. For eigenfunction sets corresponding to
continuous spectra, you can see in Hemmer that the formalism is almost the same; one only
replaces the sums in the expansion formula and in the completeness relation by integrals
(over the continuous spectrum).

Here, we shall consider one example, namely the eigenfunction set of the momentum
operator p̂x. As an alternative to the procedure in Hemmer’s 2.5.1, we start by proving the
completeness relation, and then use this to derive the expansion formula (cf the discussion
above).

2.5.c Momentum eigenfunctions as a basis. Fourier integrals

We have seen that the momentum operator p̂x = (h̄/i)∂/∂x is hermitian, with a continuous
spectrum p ∈ (−∞,∞). In this case it is easy to show that the eigenfunctions

ψp(x) = (2πh̄)−1/2eipx/h̄, (T2.63)

with the delta-function normalization∫ ∞
−∞

ψ∗p (x)ψp′(x)dx = δ(p− p′), (T2.64)

constitute a complete set. In this case we must expect that both the completeness relation
and the expansion formula contain integrals over the contiunuous set of eigenvalues p (instead
of sums over discrete eigenvalues). Thus we expect to find a completeness relation of the
form ∫ ∞

−∞
ψp(x)ψ∗p (x′)dp = δ(x− x′), (T2.65)

and an expansion formula

g(x) =
∫ ∞
−∞

φ(p)ψp(x) dp, (T2.66)

where the function φ(p) plays the role of “expansion coefficient”.
Proof: We start by proving the completeness relation (T2.65), by inserting the momentum

eigenfunctions (T2.63) on the left side of (T2.65), getting as expected:∫ ∞
−∞

ψp(x)ψ∗p (x′)dp =
1

2π

∫ ∞
−∞

ei(x−x
′)(p/h̄)d(p/h̄) = δ(x− x′), q.e.d.

Then we apply this relation on the right side of the identity (T2.60), in analogy with the
procedure in (T2.62):

g(x) =
∫ ∞
−∞

δ(x− x′)g(x′)dx′ =
∫ ∞
−∞

dx′
(∫ ∞
−∞

dpψp(x)ψ∗p (x′)
)
g(x′)

=
∫ ∞
−∞

dp
(∫ ∞
−∞

dx′ ψ∗p (x′)g(x′)
)
ψp(x)

≡
∫ ∞
−∞

dp 〈ψp, g 〉 ψp(x) ≡
∫ ∞
−∞

dp φ(p)ψp(x), q.e.d. (T2.67)

This expansion formula,

g(x) =
∫ ∞
−∞

φ(p)ψp(x) dp, (T2.68)
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is known as a Fourier integral. We note that the “expansion coefficient” φ(p) also in this
case is the projection of the function g(x) (which we want to expand) onto the “unit vector”,
which here is ψp(x):

φ(p) = 〈ψp, g 〉 =
∫ ∞
−∞

ψ∗p (x) g(x) dx. (T2.69)

This expression is known as the Fourier transform of the function g(x). These formulae
for the Fourier integral and the Fourier transform differ from those in Appendix A.2 in B&J,
or page 383 in Hemmer,

g(x) =
1√
2π

∫ ∞
−∞

G(k) eikx dk,

(T2.70)

G(k) =
1√
2π

∫ ∞
−∞

e−ikx g(x) dx,

only by the notation. (See also Griffiths page 46.)
A sufficient (but possibly not necessary) condition for the existence of the Fourier trans-

form φ(p) (or if you like, G(k)) is that the Fourier integral converges absolutely, meaning
that the integral ∫ ∞

−∞
|f(x)|dx

exists (is finite). This condition is more restrictive than that of square integrability (which
ensures normalizability). When the former condition is satisfied, we are free to interchange
the order integrations (and summations), as we have done above. Under these conditions, it
turns out that the Fourier transform has the same normalization as the function g(x):∫ ∞

−∞
|g(x)|2dx =

∫ ∞
−∞
|φ(p)|2dp. (T2.71)

This is known as Parceval’s relation.
While the discrete set of oscillator eigenfunctions (T2.54) are normalizable to 1 and

belong to the “vector space of square-integrable functions” (Hilbert space), you should note
that this is not the case for the momentum eigenfunctions

ψp(x) ∝ eipx/h̄ ≡ eikx.

As we have seen, these are not normalizable to 1, and require delta-function “normalization”.
Thus they do not belong to the Hilbert space. It is somewhat peculiar that these functions,
which do not themselves belong to the Hilbert space, form an excellent basis for this space.
But this is of course well known by those who have a little experience with Fourier integrals:
It is perfectly alright to use a basis outside the space as long as this basis is complete.

3 dimensions

The above formalism is easily generalized to 2 or 3 dimensions. Thus the complete set of
eigenfunctions of the momentum operator p̂ = h̄

i
∇ is the plane-wave set

ψp(r) = (2πh̄)−3/2 eip·r/h̄ = ψpx(x)ψpy(y)ψpz(z). (T2.72)
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This set satisfies the completeness relation∫
ψp(r)ψ∗p (r′) d3p = δ(r− r′), (T2.73)

and constitutes a basis for the three-dimensional Fourier integral: An arbitrary square-
integrable function g(r) can be expanded as

g(r) =
∫
φ(p)ψp(r)d3p, (T2.74)

and the Fourier transform is the projection of the function g(r) onto the the “vector” ψp(r),

φ(p) = 〈ψp, g 〉 =
∫
ψ∗p (r) g(r) d3r. (T2.75)

It should be noticed that also other complete sets can be used. As a special example we
can mention the eigenfunctions of the hydrogen atom (cf the Coulomb problem), with

Ĥ = − h̄2

2m
∇2 − e2

4πε0 r
.

In this case only the bound states are square integrable, while the unbound states require
delta-function normalization. In such a case, both the expansion formula and the complete-
ness relation will contain a sum (over discrete eigenvalues) and an integral (over continuous
eigenvalues). Thus you should note that the bound states alone do not constitute a complete
set. See e.g. B&J, section 5.3.

A small exercise: The Gauss function

g(x) = (2πσ2)−1/4e−x
2/4σ2

can be written as a Fourier integral,

g(x) =
∫ ∞
−∞

φ(p)ψp(x) dp, with ψp(x) = (2πh̄)−1/2eipx/h̄. (1)

Show that the Fourier transform of g(x), φ(p) =
∫∞
−∞ ψ

∗
p (x)g(x)dx, is given by

φ(p) =

(
2σ2

πh̄2

)1/4

e−σ
2p2/h̄2 .

As a check, you can insert this result into (1) to see if you are able to reproduce
the original function g(x). Given:∫ ∞

−∞
e−ax

2+bxdx =
√
π/a eb

2/4a (<e(a) > 0).
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2.5.d Physical interpretation of the expansion coefficients
(cf 2.5.2 in Hemmer, 3.8 in B&J)

Fourier analysis, based on the completeness of the momentum eigenfunctions, is an important
tool in many physical disciplines and also in technology. But why is the completeness of the
eigenfunction sets of all the other hermitian operators so important in quantum mechanics?

Much of the answer lies in the physical interpretation of the expansion coefficients.
This is beautifully explained in Hemmer’s section 2.5.2 and in section 3.8 in B&J. Here follows
another variation over the same theme:

Suppose that we have prepared a physical system, or really an ensemble of such systems,
in a state Ψ. And suppose that we measure some observable F for this ensemble. (This could
for example be the energy E). We also assume that the corresponding hermitian operator
F̂ has a discrete, non-degenerate 7 spectrum {fn} with a corresponding orthonormalized set
of eigenfunctions ψn:

F̂ψn = fnψn ; 〈ψk, ψn 〉 ≡
∫
ψ∗k ψn dτ = δkn. (T2.76)

We can of course expand the state Ψ of the system in this complete set of states ψn:

Ψ =
∑
n

cnψn ; cn = 〈ψn,Ψ 〉 ≡
∫
ψ∗n Ψ dτ. (T2.77)

Let us insert this expansion into the formula for the expectation value of the observable F .
Using (T2.16) we get:

〈F 〉Ψ =
∫

Ψ∗ F̂ Ψ dτ =
∫

(F̂Ψ)∗Ψ dτ

=
∫ (

F̂
∑
n

cnψn

)∗
Ψ dτ =

∫ (∑
n

cnF̂ψn

)∗
Ψ dτ

=
∑
n

c∗nf∗n
∫
ψ∗n Ψ dτ︸ ︷︷ ︸
cn

(fn reell)

=
∑
n

c∗nfncn =
∑
n

|cn|2fn. (T2.78)

Here we must now remember the measurement postulate, which tells us that each measure-
ment of F must give one of the eigenvalues fn and and leave the system in the corresponding
eigenstate ψn. According to ordinary probability theory, the expectation value can therefore
also be expressed as follows:

〈F 〉Ψ =
∑
n

Pnfn, (T2.79)

where Pn is the probability of measuring the eigenvalue fn. By comparing the two formulae
above (which are valid for any state Ψ), we can state that the probability must be the square
of the expansion coefficient:

Pn = |cn|2.
7An eigenvalue is non-degenerate when there is only one eigenfunction with this eigenvalue.
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The “moral” that can be extracted from this argument is the following physical interpretation
of the expansion coefficients in (T2.56):

When the system is in the state Ψ, the probability that a measurement of
F gives the eigenvalue fn (and leaves the system in the state ψn) is

Pn = |cn|2 = |〈ψn,Ψ 〉|2 ≡
∣∣∣∣∫ ψ∗nΨ dτ

∣∣∣∣2 . (T2.80)

For this reason, the expansion coefficient cn itself is often called the probability amplitude
of measuring fn (and leaving the system in the corresponding eigenstate ψn). Here, it is
important to note that this amplitude simply is the projection of the state Ψ of the system
before the measurement onto the resulting state ψn after the measurement;

cn = 〈ψn,Ψ 〉 .

This is a very important rule in quantum mechanics. Note that a measurement normally
changes the state of the system. This is more of a rule than an exception. An example
is when we measure the energy of a system and get one of the possible results En, leaving
the system in the corresponding energy eigenstate ψn. If the system was in a different state
before the measurement, its state has been changed by the measurement. Note that a new
measurement of the energy after the measurement of En will give the same value. This
second measurement therefore does not change the state. (So this is the exception.)

Note also that the sum of the probabilities is equal to 1:∑
n

Pn =
∑
n

|c2
n| = 1.

This is in fact the normalization condition for the state Ψ. (Cf equation (T2.11)).

A small exercise: A harmonic oscillator is prepared in a state described by the
wave function

ψ(x) =
(
mω

πh̄

)1/4

e−mω(x−a)2/2h̄,

that is, in a wave function with same form as the ground state of the oscillator,
only displaced a distance a compared to this state. What is the probability
that a measurement of the energy of this oscillator gives the ground-state energy
E0 = 1

2
h̄ω? What is the state of the oscillator after a measurement of the ground-

state energy? Check that the values obtained for the probability for a = 0 and
for a→∞ are reasonable (Given: The integral page 31.)

A simple example

Let our system be a particle in a box, with the energy eigenfunctions ψn(x) =
√

2/L sin(nπx/L)

and the energy eigenvalues En = n2E1; E1 = h̄2π2/(2mL2); n = 1, 2, · · · . Then we
know that

Ψn(x, t) = ψn(x) e−iEnt/h̄
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are (stationary) solutions of the Schrödinger equation for the box,

ih̄
∂Ψ(x, t)

∂t
= ĤΨ(x, t).

According to the superposition principle, any linear combination of these stationary states
will satisfy the Schrödinger equation and describe acceptable physical states for the particle
in the box. As an example of such a linear combination, describing a non-stationary state,
we consider the wave function

Ψ(x, t) = 1
2

√
3 e−iE1t/h̄ ψ1(x) + 1

2
e−iE2t/h̄ ψ2(x).

In this case, only two probability amplitudes differ from zero. These are

c1 = 1
2

√
3 e−iE1t/h̄ and c2 = 1

2
e−iE2t/h̄.

We note that the sum of the two probabilities is∑
n

|cn|2 = |c1|2 + |c2|2 = 3
4

+ 1
4

= 1,

corresponding to Ψ being normalized. (Try to check that Ψ is normalized.) When the system
is prepared in this state Ψ, a measurement of the energy will return the ground-state energy
E1 (and leave the system in the ground state) with probability 3/4, while the probability of
measuring the energy E2(= 4E1) and and leaving the system in the first excited state is 1/4.
The expectation value of the energy is

〈E 〉Ψ =
∑
n

|cn|2En =
3

4
E1 +

1

4
· 4E1 =

7

4
E1.

If you like, you may calculate the uncertainty of the energy, by first finding the expectation
value of E2.

2.5.e Measurement of a degenerate eigenvalue ***8

In cases where the measured eigenvalue is degenerate, we must be a little bit more specific,
both in the formulation of the measurement postulate, and in the pysical interpretation of
the expansion coefficients.

As an example, we consider a three-dimensional isotropic harmonic oscillator [with V =
1
2
mω2r2 = 1

2
mω2x2 + 1

2
mω2y2 + 1

2
mω2z2.] By writing the energy eigenfunctions as products

of one-dimensional oscillator eigenfunctions (one for each of the three directions x, y and z),
it is easy to see that the energy levels are

EN = h̄ω(N + 3/2), N = 0, 1, 2, · · · . (T2.81)

(See page 83 in Hemmer or section 7.1 in B&J.) For N ≥ 1 we find that these levels are
degenerate, with a (degree of) degeneracy

gN = 1
2
(N + 1)(N + 2). (T2.82)

8Sections marked *** are not compulsory in Fy1006/TFT4215.
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Thus for a given energy quantum number N there are gN energy eigenstates with the same
energy EN ,

ψNi, i = 1, 2, · · · , gN .
Altogether these states form a complete set, in which we may expand an arbitrary square-
integrable function g(r), including the state Ψ which we have prepared for the oscillator:

Ψ =
∞∑
N=0

gN∑
i=1

cNiψNi = c01ψ01 +
3∑
i=1

c1iψ1i +
6∑
i=1

c2iψ2i + · · · . (T2.83)

The expansion coefficients are the projections

cNi = 〈ψNi,Ψ 〉 ≡
∫ ∞
−∞

ψ∗Ni Ψ d3r. (T2.84)

A series of measurements of the energy of the oscillator (when it is in the state Ψ) will give an
average close to the theoretical expectation value. This expectation value can be expressed
in terms of the expansion coefficients, as in (T2.78):

〈E 〉Ψ =
∫ (

ĤΨ
)∗

Ψ d3r

=
∫ (∑

N

∑
i

cNiĤψNi

)∗
Ψ d3r

=
∑
N

∑
i

c∗NiEN
∫
ψ∗Ni Ψ d3r︸ ︷︷ ︸

cNi

=
∑
N

( gN∑
i=1

|cNi|2
)
EN . (T2.85)

On the other hand we know that

〈E 〉Ψ =
∑
N

PNEN , (T2.86)

where PN is the probability of measuring the energy EN . Comparing, we see that the
probability of measuring the degenerate energy eigenvalue EN is

PN =
gN∑
i=1

|cNi|2. (T2.87)

Immediately after this measurement of the energy EN the oscillator will be in a state de-
scribed by the (normalized) wave function

ψN ≡
∑gN
i=1 cNiψNi

||∑gN
i=1 cNiψNi||

. (T2.88)

Here we see that the part of the wave function Ψ which is “not compatible with the energy
EN is peeled off” by this measurement. This shows how the measurement postulate must be
formulated when an eigenvalue is degenerate. For the non-degenerate ground state (N = 0)
you can note that the state after the measurement of E0 according to this formula becomes

c01ψ01

||c01ψ01||
=

c01

|c01|
ψ01,

in agreement with the formulation page 23. (The phase factor c01/|c01| is of no importance.)
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2.5.f Physical interpretation in the continuous case

The physical interpretation of the expansion coefficients in the continuous case is described
in a very clear and concise way page 33–34 in Hemmer. (Sea also Griffiths page 106–107 and
B&J page 208.)

Here we again consider the example with the momentum eigenfunctions,

ψp(x) = (2πh̄)−1/2eipx/h̄, p̂xψp(x) = pψp(x), p ∈ (−∞,∞). (T2.89)

Instead of an arbitrary function g(x), we now choose to expand the time-dependent wave
function Ψ(x, t) of a one-dimensional quantum-mechanical system:

Ψ(x, t) =
∫ ∞
−∞

Φ(p, t)ψp(x) dp. (T2.90)

Since Ψ(x, t) depends on time, the Fourier transform Φ(p, t) will also be time dependent:

Φ(p, t) = 〈ψp,Ψ(t) 〉 ≡
∫ ∞
−∞

ψ∗p (x) Ψ(x, t) dx. (T2.91)

Following the procedure in (T2.78), we now proceed to calculate the expectation value of
the observable px in the state Ψ:

〈 px 〉Ψ =
∫ ∞
−∞

dxΨ∗(x, t) p̂x Ψ(x, t) =
∫ ∞
−∞

dx (p̂xΨ(x, t))∗Ψ(x, t)

=
∫ ∞
−∞

dx
(
p̂x

∫ ∞
−∞

dpΦ(p, t)ψp(x)
)∗

Ψ(x, t).

Here we replace p̂xψp(x) with pψp(x) and change the order of the integrations:

〈 px 〉Ψ =
∫ ∞
−∞

dpΦ∗(p, t) p
(∫ ∞
−∞

dxψ∗p (x) Ψ(x, t)
)

=
∫ ∞
−∞

Φ∗(p, t) pΦ(p, t) dp =
∫ ∞
−∞

p |Φ(p, t)|2dp.

On the other hand we know that

〈 px 〉Ψ =
∫ ∞
−∞

pP (p) dp,

where P (p) is the probability density in “p space” [so that P (p)dp is the probability of
measuring the momentum px in the interval (p, p + dp)]. Thus, the physical interpretation
of the “expansion coefficient” (the Fourier transform Φ(p, t)) is:

When the system is in the state Ψ(x, t) before the measurement, the prob-
ability of measuring px in the interval (p, p+ dp) is

P (p)dp = |Φ(p, t)|2dp = |〈ψp,Ψ 〉|2 dp ≡
∣∣∣∣∫ ψ∗p (x)Ψ(x, t) dτ

∣∣∣∣2 dp. (T2.92)

Thus the probability density in “p space” is the square of the Fourier transform Φ(p, t). This
is analoguous to |Ψ(x, t)|2 being the probability density in x space .
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2.5.g The position eigenfunctions δ(x − x′) ≡ ψx′(x) as a basis (the
“x-basis”)

The relation
xδ(x− x′) = x′δ(x− x′) (T2.93)

can be interpreted as an eigenvalue equation for the operator x̂ = x (multiplication by x).
Here, x′ is the eigenvalue, and we see that the x-dependent eigenfunction corresponding to
this eigenvalue is

δ(x− x′) ≡ ψx′(x) (a function of x).

(For comparison, ψp(x) is an eigenfunction of the momentum operator p̂x with the eigenvalue
p.) The continuous spectrum x′ ∈ (−∞,∞) of eigenvalues implies that we must use delta-
function normalization:∫ ∞

−∞
ψ∗x′(x)ψx′′(x)dx =

∫ ∞
−∞

δ(x− x′)δ(x− x′′)dx = δ(x′ − x′′), (T2.94)

in analogy with the normalization∫ ∞
−∞

ψ∗p (x)ψp′(x)dx = δ(p− p′)

for the momentum eigenfunctions.
The position eigenfunctions ψx′(x) = δ(x− x′) may very well be used as a basis for the

“vector space of square-integrable functions” (the Hilbert space), even if this basis itself does
not belong to this space. (We remember that the same was the case with the momentum
eigenfunctions.) As an example, we may expand the wave function Ψ of a physical system
in the position basis. This expansion in fact follows directly from the identity

Ψ(x, t) =
∫ ∞
−∞

Ψ(x′, t)δ(x− x′)dx′ =
∫ ∞
−∞

Ψ(x′, t)ψx′(x)dx′. (T2.95)

Thus the “expansion coefficient” is Ψ(x′, t). This expansion is analogous to the Fourier
expansion

Ψ(x, t) =
∫ ∞
−∞

Φ(p, t)ψp(x)dp.

Inspired by (T2.92), we can then interpret |Ψ(x′, t)|2dx′ as the probability of measuring the
position in the interval (x′, x′ + dx′). We recognize this as the probability interpretation of
the wave function. This illustrates that the role played by |Ψ(x, t)|2 in position space is the
same as the role played by |Φ(p, t)|2 in momentum space.
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2.6 The momentum-space formulation of quantum me-

chanics***9

This “similarity” between the position-space and momentum-space probability densities is
not accidental. As explained in section 4.6 in Hemmer and in 3.9 in B&J, it is straightforward
to obtain a formulation of the theory in which the Fourier transform Φ(p, t) of Ψ(x, t) plays
the role of a “wave function” in momentum space. This role is analogous to that played
by the ordinary wave function Ψ(x, t) in the position-space formulation of quantum
mechanics, which we are now beginning to get used to, and which is most commonly used
on the introductory level.

In the new momentum-space formulation of quantum mechanics, we already
know how to obtain the expectation values of observables which depend only on px, like e.g.
K = p2

x/2m. Since the probability density in momentum space is |Φ(p, t)|2, we have that

〈F (px) 〉Φ =
∫ ∞
−∞
|Φ(p, t)|2F (p)dp =

∫ ∞
−∞

Φ∗(p, t)F (p) Φ(p, t) dp, (T2.96)

which is analogous to

〈V (x) 〉Ψ =
∫ ∞
−∞

Ψ∗(x, t)V (x) Ψ(x, t) dx

in the position-space formulation. The “moral” is that in the momentum-space formulation,
the observable px is represented by an operator which simply is (multiplication by) the
number p,

p̂x = p. (T2.97)

This is analogous to x̂ = x in the position-space formulation.
What about the operators representing x and functions of x (like e.g. V (x)) in the new

formulation? To find the answer, we shall assume that the potential V (x) can be expanded
in a Taylor series,

V (x) =
∑
n

vnx
n,

where the expansion coefficients are vn. The expectation values of x and powers of x can
now be found starting with the old formulation, where the expectation value of xn is

〈xn 〉 =
∫ ∞
−∞

Ψ∗(x, t)xn Ψ(x, t) dx =
∫ ∞
−∞

(xnΨ)∗Ψ dx

=
∫ ∞
−∞

dx
(
xn
∫ ∞
−∞

dpΦ(p, t)ψp(x)
)∗

Ψ(x, t).

Here we apply the identity

x eipx/h̄ =

(
h̄

i

∂

∂p

)
eipx/h̄, (T2.98)

which means that

xn ψp(x) =

(
h̄

i

∂

∂p

)n
ψp(x). (T2.99)

9Sections marked with *** are not compulsory in FY1006/TFY4215.
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Inserting this and rearranging we then have

〈xn 〉 =
∫ ∞
−∞

dx

(∫ ∞
−∞

dpΦ(p, t)

(
h̄

i

∂

∂p

)n
ψp(x)

)∗
Ψ(x, t)

=
∫ ∞
−∞

dpΦ∗(p, t)
(
− h̄
i

∂

∂p

)n ∫ ∞
−∞

dxψ∗p (x)Ψ(x, t)︸ ︷︷ ︸
Φ(p,t)

=
∫ ∞
−∞

dpΦ∗(p, t)
(
− h̄
i

∂

∂p

)n
Φ(p, t). (T2.100)

Comparing this expression with the general “sandwich” recipe for expectation values,

〈F 〉Φ =
∫ ∞
−∞

dpΦ∗(p, t) F̂ Φ(p, t), (T2.101)

we can conclude that the observable xn is represented in the momentum-space formulation
by the nth power of the operator

x̂ = − h̄
i

∂

∂p
. (T2.102)

For a function of x like e.g. V (x) =
∑
vnx

n we find that

〈V (x) 〉Φ =
∫ ∞
−∞

dpΦ∗(p, t)
[∑
n

vn

(
− h̄
i

∂

∂p

)n]
Φ(p, t). (T2.103)

Thus the potential energy is in the new formulation represented by the operator

∑
n

vn

(
− h̄
i

∂

∂p

)n
≡ V̂

(
− h̄
i

∂

∂p

)
.

This is called an operator function, and the Taylor expansion on the left shows exactly
what we mean by this. As an example, the harmonic-oscillator potential V (x) = 1

2
mω2x2

is in this formulation represented by the operator V̂ = 1
2
mω2(− h̄

i
∂
∂p

)2.
We have now learnt how to calculate expectation values of observables depending on x

and px in the new formulation, from the “wave function” Φ(p, t). But can we be sure that
this function contains all possible information about the system, as is the case for Ψ(x, t)
according to the wave-function postulate on page 8? The answer is yes: If we know the
function Φ(p, t), then we also know Ψ(x, t), via the Fourier integral

Ψ(x, t) =
∫ ∞
−∞

Φ(p, t)ψp(x) dp,

and vice versa, via the Fourier transform

Φ(p, t) =
∫ ∞
−∞

ψ∗p (x) Ψ(x, t) dx.

Thus the two functions contain the same information.
But isn’t Ψ(x, t) still more special, since it satisfies a wave equation, the Schrödinger

equation? The answer is no: There exists a wave equation also for Φ(p, t). We can find
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this equation by taking the derivative ih̄(∂/∂t)Φ(p, t) as our starting point: Using the last
formula above, we find that

ih̄
∂

∂t
Φ(p, t) =

∫ ∞
−∞

ψ∗p (x) ih̄
∂

∂t
Ψ(x, t) dx

(
ih̄
∂

∂t
Ψ =

[
p̂2
x/2m+ V (x)

]
Ψ

)

=
∫ ∞
−∞

ψ∗p (x)
[
p̂2
x/2m+ V (x)

]
︸ ︷︷ ︸

hermitesk

Ψ(x, t) dx

=
∫ ∞
−∞

([
p̂2
x/2m+

∑
n

vnx
n

]
ψp(x)

)∗
Ψ(x, t) dx

=
∫ ∞
−∞

([
p2/2m+

∑
n

vn

(
h̄

i

∂

∂p

)n]
ψp(x)

)∗
Ψ(x, t) dx.

Here we have applied the identities

p̂xψp(x) = pψp(x) and xψp(x) =

(
h̄

i

∂

∂p

)
ψp(x).

In the last expression we can move the operator [ ]∗ to the left of the integral, because it
does not depend on x. We then have

· · · =

[
p2/2m+

∑
n

vn

(
− h̄
i

∂

∂p

)n] ∫ ∞
−∞

ψ∗p (x)Ψ(x, t)︸ ︷︷ ︸
Φ(p,t)

dx

=

[
p2/2m+ V̂

(
− h̄
i

∂

∂p

)]
Φ(p, t) ≡ ĤΦ(p, t). (T2.104)

This must be called a success: Φ(p, t) does satisfy a wave equation, and the form of this
equation allows us to call it a Schrödinger equation.

Thus we have two equivalent versions of quantum mechanics, the position-space for-
mulation and the momentum-space formulation. With the symbols x, y, z (or xi, i =
1, .., 3) for the cartesian coordinates, the situation can be summarized by the following table,
where we see that both wave functions satisfy the Schrödinger equation, with a Hamiltonian
given by the general formula

Ĥ(x̂i, p̂i) =
p̂2
x + p̂2

y + p̂2
z

2m
+ V̂ (x̂, ŷ, ẑ).

Example: Free particle

For a free particle (V = 0) we see that the Schrödinger equation in the momentum-space
formulation looks like this:

ih̄
∂Φ(p, t)

∂t
=

p2

2m
Φ(p, t) (p = px) .

Here, ∂/∂t means differentiation with p kept fixed. Then it is easy to see that the time-
dependent wave function in momentum space becomes

Φ(p, t) = Φ(p, 0) e−i(p
2/2m)t/h̄. (T2.105)
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Position-space Momentum-space

formulation formulation

Wave function Ψ(x, y, z, t) Φ(px, py, pz, t)

Operator x̂i xi − h̄
i

∂

∂pi

Operator p̂i
h̄

i

∂

∂xi
pi

Wave equation ih̄
∂Ψ

∂t
= Ĥ(x̂i, p̂i)Ψ ih̄

∂Φ

∂t
= Ĥ(x̂i, p̂i)Φ

Here, φ(p, 0) is the momentum-space wave function at t = 0, which we are allowed to
prepare arbitrarily, but we assume that it is normalized:∫ ∞

−∞
|Φ(p, 0)|2dp = 1.

From the solution (T2.105) we see that the probability density in momentum space becomes
time independent for the free particle,

|Φ(p, t)|2 = |φ(p, 0)|2,
and this should not be surprising. The same should then be the case for all purely p-
dependent observables, like e.g.

〈 p 〉 =
∫ ∞
−∞

Φ∗(p, t) pΦ(p, t) dp =
∫ ∞
−∞

Φ∗(p, 0) pΦ(p, 0) dp = 〈 p 〉t=0 ,

〈 p2 〉, ∆p, etc. We can also find out how the expectation value of the position behaves: From
(T2.53) and (T2.55) we have

〈x 〉t =
∫ ∞
−∞

Φ∗(p, t)
(
− h̄
i

∂

∂p

)
Φ(p, t) dp

=
∫ ∞
−∞

Φ∗(p, 0)ei(p
2/2m)t/h̄

[
− h̄
i

∂

∂p
Φ(p, 0)− Φ(p, 0)

h̄

i

∂

∂p

(
− ip

2t

2mh̄

)]
ei(p

2/2m)t/h̄ dp

=
∫ ∞
−∞

Φ∗(p, 0)

(
− h̄
i

∂

∂p

)
Φ(p, 0) dp+

t

m

∫ ∞
−∞

Φ∗(p, 0) pΦ(p, 0) dp

= 〈x 〉t=0 +
〈 p 〉
m

t.

Thus the expectation value 〈x 〉t is moving with constant velocity 〈 p 〉 /m, from 〈x 〉t=0 at
t = 0. This agrees with Newton’s first law.
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2.7 Stationary and non-stationary states

2.7.a Stationary states (Hemmer p 26, Griffiths p 21, 3.5 in B&J)

The concept of a stationary state was first introduced in Lecture notes 1, to denote the the
physical state of e.g. the “ground state” of the hydrogen atom, following Bohr’s idea. On
the theoretical side we saw that when Schrödinger was able to find an eigenfunction of the
Hamiltonian Ĥ,

Ĥψn(r) = Enψn(r),

then the function
Ψn(r, t) = ψn(r)e−iEnt/h̄

is a solution of the (time-dependent) Schrödinger equation. 10

We call this a stationary solution (of the Schrödinger equation), because it gives a the-
oretical description of the physical state. In the literature, it is common to use the notion
of a “stationary state” to denote both the physical state and the and the corresponding
theoretical solution Ψ(r, t) of the Schrödinger equation.

The stationary states emerge in a natural way when we try to separate the time- and
space-dependence by looking for solutions of the Schrödinger equation on the form

Ψ(x, t) = ψ(x)f(t).

As you can see e.g. on page 26 in Hemmer, this separation is possible only if

• (i) Ĥ is time-independent, and

• (ii) ψ(x) is an eigenfunction of Ĥ.

Thus, ψ must be a solution of the time-independent Schrödinger equation, ĤψE(x)=
EψE(x).

It is then straightforward to find f(t). The time-dependent Schrödinger equation gives

ih̄
∂f

∂t
· ψE(x) = f(t) ĤψE(x) = f(t)E ψE(x).

Here, the partial derivative ∂/∂t implies differentiation with respect to t with x kept fixed.
And with fixed x it is easy to integrate the above equation over time, from 0 to t:

df

f
= −iE

h̄
dt =⇒ ln f(t) = ln f(0)− iEt

h̄
, =⇒

f(t) = f(0) e−iEt/h̄.

The constant f(0) can be absorbed into ψ(x), so that the solution becomes

ΨE(x, t) = ψE(x) e−iEt/h̄. (T2.106)

As already mentioned, this is called a stationary solution of the Schrödinger equation,
because

10See also the discussion of a particle in a box, in section 2.1.
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• the probability density |ΨE(x, t)|2 = |ψE(x)|2 is time independent (does not ”move”)

• all observables which do not depend explicitly on the time, like e.g. x, px, E etc, have
time-independent expectation values in such a stationary state ΨE(x, t).This is because
for such an observable F = F (x, px) we have:

〈F 〉ΨE
=

∫
Ψ∗E(x, t) F̂ (x, p̂x) ΨE(x, t)dx

=
∫
ψ∗E(x) F̂ (x, p̂x)ψE(x)dx = constant, (T2.107)

(since the time-dependent exponentials in the integrand cancel). This means that the expo-
nential function exp(−iEt/h̄) in reality is without physical meaning for a stationary state; it
has no measurable consequences. Thus, in a stationary state there is no measurable time de-
velopment ; there is no process taking place; nothing ”happens”. So the state really deserves
to be called stationary.

Why then are we so interested in the energy eigenfunctions and the corresponding sta-
tionary states? There are (at least) four reasons:

Reason 1: When a system has its lowest possible energy (is in its ground state), all the
properties of the system in this state are determined by the ground-state energy eigenfunction
ψ(r). Even if nothing “happens” in this state, the wave function contains a lot of interesting
information: It determines all the physical properties of the system in its ground state,
such as the form, the size and the energy. This holds both for isolated atoms and for more
complicated systems, like more or less complex molecules, crystals, etc. The same holds for
excited states (where both the size and the form may differ very much from those of the
ground state).

Reason 2: Since ψE(x) [and also ΨE(x, t) = ψE(x) exp(−iEt/h̄)] are eigenfunctions of Ĥ
(and Ĥ2) with eigenvalues E (and E2), we can state that the energy is sharply defined in
a stationary state, meaning that the uncertainty in the energy is ∆E = 0. [Remember
that (∆E)2 = 〈 (E − 〈E 〉)2 〉 = 〈E2 〉 − 〈E 〉2; cf section 2.4.b above.] These energies are
important in processes where the system is excited or de-excited. (Cf spectral lines.)

2.7.b Non-stationary states

Reason 3: According to the superposition principle, also an arbitrary linear combination
of the stationary solutions Ψn(x, t) = ψn(x) exp(−iEnt/h̄) is a solution of the Schrödinger
equation, and therefore describes a possible physical state of the system (cf the discussion
of the particle in a box in section 2.1):

Ψ(x, t) =
∑
n

cn Ψn(x, t) =
∑
n

cn ψn(x) e−iEnt/h̄. (T2.108)

Here the coefficients cn are arbitrary complex constants (independent of x and t). It can be
shown that Ψ(x, t) is normalized if

∑
n |cn|2 = 1 (provided that the set ψn(x) is orthonor-

malized). It can also be shown that the expression above is the most general solution of
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the Schrödinger equation. This means that all solutions of the Schrödinger equation can be
expanded in terms of the stationary solutions.

If the sum above above contains terms with different energies En, the sum is not an eigen-
function of the Hamiltonian Ĥ. Then Ψ(x, t) is a non-stationary solution of the Schrödinger
equation and describes a non-stationary physical state for the system. For such a state it is
easy to see that the probability density |Ψ(x, t)|2 and (some of) the expectation values 〈F 〉Ψ
will depend on time (contrary to the case of stationary states). The reason is of course that
the phase factors exp(−iEnt/h̄) are “running around the complex unit circle with different
speeds”, or different periods Tn = 2πh̄/En, if you like. Here we observe that these phase
factors (or rather the ratios between them) are in fact important. Such non-stationary states
are always needed if we want to describe a process, where something happens.

Reason 4: A generic problem in quantum mechanics is to find the wave function Ψ(x, t)
at an arbitrary time t when the system is prepared in a given state Ψ(x, t0) at some initial
time t0, e.g. t0 = 0. When the potential is time-independent, we can solve this problem
by expanding the unknown solution Ψ(x, t) in terms of the stationary states, which form a
complete set:

Ψ(x, t) =
∑
n

cnψn(x) e−iEnt/h̄.

Thus the problem is essentially solved if we can determine the expansion coefficients cn.
These are determined by the initial state. By setting t = 0 in the above expansion, we
have

Ψ(x, 0) =
∑
n

cn ψn(x). (T2.109)

With our experience from section 2.5.b, we now see that cn is the projection of Ψ(x, 0) onto
the eigenfunction ψn(x), but it does not hurt to repeat the calculation: By projecting Ψ(x, 0)
onto the eigenstate ψn(x) we find that

〈ψn,Ψ(0) 〉 =

〈
ψn,

∑
k

ckψk

〉
=
∑
k

ck 〈ψn, ψk 〉 =
∑
k

ckδnk = cn, q.e.d. (T2.110)

Thus the time-dependent wave function is

Ψ(x, t) =
∑
n

〈ψn,Ψ(0) 〉 ψn(x) e−iEnt/h̄, (T2.111)

where
〈ψn,Ψ(0) 〉 ≡

∫ ∞
−∞

ψ∗n (x)Ψ(x, 0)dx. (T2.112)

The trivial example is when the initial state is one of the energy eigenstates, that is when
Ψ(x, 0) = ψi(x). (i for “initial”.) Then the recipe above gives

cn = 〈ψn,Ψ(0) 〉 = 〈ψn, ψi 〉 = δni,

and the system continues to be in the corresponding stationary state:

Ψ(x, t) =
∑
n

δniψn(x) e−iEnt/h̄ = ψi(x) e−iEit/h̄ ≡ Ψi(x, t).
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Conclusion: Given a problem for which the Hamiltonian is time independent, the general
strategy simply is to find the complete set ψn(x) of energy eigenfunctios, and the correspond-
ing stationary solutions Ψn(x, t) = ψn(x) exp(−iEnt/h̄) of the Schrödinger equation.

2.8 Conservation of probability

This section is beautifully described in section 2.6.1 in Hemmer. See also 3.2 in B&J. Some
comments:

The normalization is conserved

For a stationary state the normalization condition is

ΨE(r, t) = ψE(r)e−iEt/h̄ and
∫
|ΨE(r, t)|2d3r =

∫
|ψE(r)|2d3r = 1.

Here we see that if the wave function is normalized at t = 0, then it is normalized for all
times; the probability is conserved. The probability must of course also be conserved for
non-stationary states Ψ(r, t) — in our non-relativistic theory the particle must always be
somewhere, and then the integral over the probability density |Ψ(r, t)|2 must be equal to 1
at any time.11 That this actually is the case can be seen from the expansion in terms of
stationary (and orthonormalized) states,

Ψ(r, t) =
∑
n

cnΨn(r, t),

where the coefficients cn are time independent. As discussed in section 2.1 above, the cross
terms in the product of the two sums Ψ∗(r, t) and Ψ(r, t) in the normalization integral will
vanish under the integration; cf the normalization condition which is

∫
Ψ∗Ψd3r =

∫ (∑
m

c∗mΨ∗m

)(∑
n

cnΨn

)
d3r =

∑
nm

c∗mcn
∫

Ψ∗mΨnd
3r︸ ︷︷ ︸

δmn

=
∑
n

|cn|2 = 1.

(T2.113)
Clearly, if this condition is satisfied for t = 0, it will be satisfied for all times. Thus the
normalization is “conserved”.

Probability conservation on integral form

If the probability
∫
V ρ(r, t)d3r of finding the particle inside some volume V is increasing, the

total probability current entering this volume must be positive.

11In relativistic theory — and in reality — it is not that simple; particles can be created or annihilated.
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Therefore there must exist a probability current density j(r, t), in such a way that the
current entering the volume is given by a surface integral −

∫
S j·dS. (Note that dS = n̂dS

points outwards.) In order to have a conserved probability we must then have

d

dt

∫
V
ρ(r, t)d3r =

∫
V

∂ρ

∂t
d3r = −

∫
S

j·dS G.t
= −

∫
V
∇·j d3r. (T2.114)

Here we have used Gauss’ theorem (the divergence theorem) to transform the surface integral
into a volume integral over the divergence of the probability current density. This equation
expresses probability conservation on integral form.

Differential form, the continuity equation

Since the above conservation law on integral form is valid for an arbitrary volume V (with
arbitrary position and size), we see that ρ and j must satisfy the continuity equation:

∂ρ

∂t
+ ∇·j = 0.

(
continuity
equation

)
(T2.115)

This conservation law on differential form is valid not only for probability, but also for electric
charge in electrodynamics, mass in hydrodynamics, etc.

The expression for j

As shown in Hemmer or in B&J, it is fairly straightforward to find an expression for the
probability current density j. Here we show this for the one-dimensional case. Using the
Schrödinger equation,

ih̄
∂Ψ(x, t)

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t),

we have

∂ρ

∂t
=

∂

∂t
(Ψ∗Ψ) = Ψ∗ ∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t

= − h̄

2mi

(
Ψ∗ ∂

2Ψ

∂x2
−Ψ

∂2Ψ∗

∂x2

)
= − h̄

2mi

∂

∂x

(
Ψ∗ ∂Ψ∗

∂x
−Ψ

∂Ψ∗

∂x

)
.

(In the next to the last step, the terms with V (x, t) cancel. The last step is most easily taken
backwards.) Since z + z∗ = 2<e(z), this can be re-written as

∂ρ

∂t
= − ∂

∂x

(
Ψ∗ h̄

2mi

∂

∂x
Ψ + Ψ

h̄

2m(−i)
∂

∂x
Ψ∗
)

= − ∂

∂x
<e

(
Ψ∗ h̄

mi

∂

∂x
Ψ

)
.

In one dimension, everything depends only on x and t, and the probability current density
must be directed in the x direction. From the above formula we therefore have

∂ρ

∂t
+
∂jx
∂x

= 0, jx = <e
(

Ψ∗ p̂x
m

Ψ
)
. (T2.116)
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In three dimensions, this can be generalized to

∂ρ

∂t
+ ∇·j = 0, j = <e

(
Ψ∗ p̂x

m
Ψ

)
. (T2.117)

For a normalized (localized) state, the wave function, and hence also j, must approach
zero “far away” from where the particle is localized. Therefore, if we let the volume in
(T2.114) become sufficiently large, the surface integral

∫
S j·dS must clearly approach zero:

d

dt

∫
V
ρ(r, t)d3r = −

∫
V
∇·j d3r = 0.

In this limit, the total probability inside the volume V therefore is constant in time; proving
once again that the normalization is “conserved”, as we found above.

Probability current density for de Broglie wave

The formula for the current density can also be used for non-localized states as e.g. the de
Broglie wave (and the momentum eigenfunction)

Ψp(r, t) = ψp(r)e−iEt/h̄, ψp(r) = (2πh̄)−3/2eip·r/h̄, E = p2/2m. (T2.118)

We note that j is time independent for this state (and for all other stationary states):

j = <e

[
Ψ∗p

h̄

im
∇Ψp

]
= <e

[
ψ∗p

h̄

im
∇ψp

]
. (T2.119)

It should also be noticed that ψ must be complex to give a non-zero current density. In
this particular example, we have that ∇eip·r/h̄ = i(p/h̄)eip·r/h̄, so that the current density
becomes

j = |ψp|2
p

m
. (T2.120)

(Repeat this calculation.) Thus we arrive at the sensible result that j = ρv, where
v = p/m is the classical velocity.

A small exercise: It can be shown that for a free particle with mass m, the
initial state

Ψ(x, 0) = (2πσ2)−1/4e−x
2/4σ2

eip0x/h̄

will give a wave packet moving with the group velocity vx = p0/m. The width of
this wave packet increases when t increases from zero. This increase of the width
is called dispersion, and is independent of the value chosen for p0.

a. Show that if we choose p0 = 0, then the current density is equal to zero for
t = 0, j(x, 0) = 0.

b. Why must (still assuming that p0 = 0) j(x, t) be different from zero for for
t > 0?
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c. Show that with p0 6= 0, the current density for t = 0 is

j(x, 0) = |Ψ(x, 0)|2p0

m
= ρ(x, 0)vx.


