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Lecture notes 11

11 Harmonic oscillator and angular
momentum — via operator algebra

In Lecture notes 3 and in 4.7 in Bransden & Joachain you will find a comprehen-
sive wave-mechanical treatment of the harmonic oscillator. We shall now show
that the energy spectrum (and the eigenstates) can be found more easily by the
use of operator algebra. In this method we use the properties of the Hilbert-
space operators directly, without the use of a particular representation, that is,
without projecting on a particular basis.

Similar methods can be applied to a whole range of problems. Here we shall
use such a method to quantize angular momentum. Then it turns out that
the abstract operator algebra not only reproduces the results for orbital angular
momenta, but also provides a description of half-integral angular momenta (e.g.
spin 1

2
), which can not be discribed in terms of wave mechanics. Thus, employing

the Dirac notation and operator algebra, we are able to formulate a more general
theory of angular momenta than that encountered in the position representation.

We start by attacking the one-dimensional oscillator, in order to gain some ex-
perience with the algebraic technique.

11.1 Harmonic oscillator

The so-called algebraic method or the operator method is explained in Hemmers book;
see also section 2.3 in J.J. Sakurai, Modern Quantum Mechanics. (In the book by Griffiths
you can see that the method may also be applied in the position representation.)

The ladder operators a and a†

The starting point is the Hamiltonian operator

Ĥ =
p̂2

2m
+ 1

2
mω2q̂2, (T11.1)

where the abstract Hilbert-space operators p̂ and q̂ satisfy the commutator relation

[q̂, p̂] = ih̄. (T11.2)
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In addition to the Hermitian operators q̂ and p̂ it is convenient to introduce the dimensionless
operator

a =

√
mω

2h̄
q̂ +

ip̂√
2mh̄ω

. (T11.3)

This operator is non-Hermitian; it differs from its own adjoint, which is 1

a† =

√
mω

2h̄
q̂ − ip̂√

2mh̄ω
. (T11.4)

We note in passing that expressed in terms of a and a† the position and momentum operators
take the form

q̂ =

√
h̄

2mω
(a+ a†),

(T11.5)

p̂ =
1

i

√
mh̄ω

2
(a− a†).

We proceed to calculate the operator products a†a and aa†. Here we must remember that q̂
and p̂ do not commute; q̂p̂− p̂q̂ = [q̂, p̂] = ih̄. We then get

a†a =

(√
mω

2h̄
q̂ − ip̂√

2mh̄ω

)(√
mω

2h̄
q̂ +

ip̂√
2mh̄ω

)

=
mω

2h̄
q̂2 +

p̂2

2mh̄ω
+

i

2h̄
(q̂p̂− p̂q̂) =

Ĥ

h̄ω
− 1

2
. (T11.6)

Here Ĥ = p̂2/2m + 1
2
mω2q̂2 is the Hamiltonian operator for the oscillator. Reversing the

order of the operators we find that the last term changes sign:

aa† = · · · = Ĥ

h̄ω
− i

2h̄
(q̂p̂− p̂q̂) =

Ĥ

h̄ω
+ 1

2
. (T11.7)

Thus the two operators do not commute, but satisfy the important commutation relation

aa† − a†a = [a, a†] = 1. (T11.8)

Energy spectrum and eigenvectors

We shall see that this algebraic relation is all we need to solve the eigenvalue problem for
the Hamiltonian (cf (T11.6))

Ĥ = h̄ω(a†a+ 1
2
), (T11.9)

that is, to find the eigenvalues En and the eigenvectors |n〉 of the eigenvalue equation

Ĥ |n〉 = h̄ω(a†a+ 1
2
) |n〉 = En |n〉. (T11.10)

1The non-Hermitian operators a and a† do not correspond to physical obervables, and it is customary
not to use the usual operator symbol̂on top of these; it is understood that they are operators.
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By writing the eigenvalues as
En = h̄ω(n+ 1

2
),

where the dimensionless numbers n are unknown, we can write this eigenvalue equation on
the form

N̂ |n〉 = n |n〉, (N̂ = a†a), (T11.11)

As you have probably guessed we want to show that the only possible eigenvalues of the
operator N̂ = a†a are n = 0, 1, 2, · · · . Therefore this operator N̂ = a†a is called the
number operator.

How do we solve the eigenvalue problem (T11.11) (where the unknown eigenvalues n of
the number operator N̂ are used to label the eigenvectors)?

We start by using the commutator aa† − a†a = 1 (which is the only thing we need) to
show that

N̂a = (a†a)a = (aa† − 1)a = aN̂ − a = a(N̂ − 1) (T11.12)

and
N̂a† = (a†a)a† = a†(1 + a†a) = a†(N̂ + 1). (T11.13)

The last relation can be used to show that

Given that |n〉 is an eigenvector of N̂ with eigenvalue n,

N̂ |n〉 = n|n〉,

then also the vector a†|n〉 is an eigenvector of N̂ , with eigenvalue
n+ 1.

(T11.14)

The proof is simple: Using (T11.13) and (T11.11) we have that

N̂(a†|n〉) = a†(N̂ + 1)|n〉 = a†(n+ 1)|n〉 = (n+ 1)(a†|n〉), (T11.15)

and this is precisely what we wanted to show. In a similar manner we can use (T11.12) to
show that a|n〉 is an eigenvector with eigenvalue n− 1:

N̂(a|n〉) = a(N̂ − 1)|n〉 = a(n− 1)|n〉 = (n− 1)(a|n〉), q.e.d. (T11.16)

Thus if you provide me with one (normalized) eigenvector |n〉, so that

N̂ |n〉 = n |n〉, 〈n|n〉 = 1,

then I can use the operators a† and a repeatedly to create a whole bunch of new eigenvectors:

a† |n〉, (a†)2|n〉, · · · and a |n〉, a2|n〉, · · · .

For this reason these operators are called ladder operators; they allow us to “climb” up
and down in energy. We may also call a† a raising operator and a a lowering operator:
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By using the raising operator a† we can obviously create an infinite number of states with
eigenvalues n + 1, n + 2, etc, but the same is not the case for the lowering operator a. As
indicated in the figure, there must be a lowest rung in the ladder, with a lowest eigenvalue
n0. This is because by taking a look at the squared norm of the vector a|n〉 we find that the
eigenvalue n has to be a non-negative number:

0 ≤ ||a |n〉||2 = (a |n〉)†(a |n〉) = 〈n|a†a|n〉 = 〈n|N̂ |n〉 = n. (T11.17)

With this little piece of algebra we have shown that if |n〉 is an eigenvector of N̂ with
eigenvalue n [and of Ĥ with eigenvalue h̄ω(n+ 1

2
)], then n has to be ≥ 0. This holds for all

eigenstates |n〉, including the lowest rung in the ladder, |n0〉, which is the ground state. We
have therfore shown that n0 is non-negative.

The calculation above also shows that the norm (the “length”) of the vector a|n〉 is

||a|n〉|| =
√
n, (T11.18)

(provided that the vector |n〉 you gave me is normalized, as was supposed above). With a
similar calculation you should now check that the norm of the vector a†|n〉 is

||a†|n〉|| =
√
n+ 1. (T11.19)

We note that the states a|n〉, a2|n〉, a†|n〉, (a†)2|n〉 etc are not normalized, but that will
be taken care of below.

Let us first see what happens if we apply the lowering operator a to the lowest rung of
the ladder, |n0〉. Equation (T11.16) then takes the form

N̂(a|n0〉) = (n0 − 1)(a|n0〉). (T11.20)

The logic of this equation, which we have to recognize, is as follows: If the vector a|n0〉
differs from zero (is normalizable), then this equation tells us that is an eigenvector of N̂ with
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eigenvalue n0 − 1. But since |n0〉 is the lowest rung, there does not exist such an additional
vector. Therefor we have to conclude that the vector a|n0〉 is identically equal to zero (and
hence is not normalizable):

a|n0〉 = 0. (T11.21)

We can conclude that when the lowering operator a acts on the ground state, we get the
null vector:

This equation (T11.21) allows us to solve the whole mystery. Using (T11.17), ||a|n〉||2 = n,
we can state that

n0 = ||a|n0〉||2 = 0, and En0 = E0 = 1
2
h̄ω, (T11.22)

as expected.
So if you give me one eigenstate |n〉, then I can use the lowering operator a to climb

down an integer number of steps until I arrive at the ground state |n0〉 = |0〉 (apart from a
normalization factor). And I may climb up again to the state (rung) you gave me with the
same number of steps. This means of course that the eigenvalue n of the vector you gave
me must be a non-negative integer.

We can conclude that the only possible energy eigenvalues are

En = (n+ 1
2
)h̄ω, med n = 0, 1, 2, · · · ,

and that there is only one eigenvector |n〉 for each En.
It is also easy to take care of the normalization. Since a†|n〉 has the eigenvalue n+ 1 and

the norm
√
n+ 1, it follows that

a†|n〉 =
√
n+ 1 |n+ 1〉, (T11.23)

where |n+ 1〉 is now normalized (and where we have made a choice of phase). Similarly it
follows from (T11.16) and (T11.18) that 2

a|n〉 =
√
n |n− 1〉, (= 0 for n = 0), (T11.24)

2Note that a removes an energy quantum h̄ω from the oscillator, while a† adds a quantum. The operator
a is therefore called an annihilation operator and a† is a creation operator.
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where |n− 1〉 is normalized. The first of these important formulae shows that the entire
infinite ladder of states can be constructed starting from the ground state |0〉 :

|1〉 =
a†√

1
|0〉,

|2〉 =
a†√

2
|1〉 =

(a†)2

√
1 · 2
|0〉,

:

:

|n〉 =
a†√
n
|n− 1〉 = · · · = (a†)n√

n!
|0〉.

Thus the ground state and the excited states are determined by the equations

a |0〉 = 0 and |n〉 =
(a†)n√
n!
|0〉. (T11.25)

The position representation

The above results for the energy spectrum and the eigenvectors of the number operator
N̂ = a†a (and hence also of Ĥ = h̄ω(N̂ + 1

2
)) were based exclusively on the operator

relation ( or ”algebra”) [a, a†] = 1, without projecting the Hilbert ket vectors onto any
basis.

As we have seen before a choice of a particular basis will give us operators and states
with a more concrete form. As an example we shall here use the position basis |q〉. We start
by checking that the relation in (T11.25),

a|0〉 = 0,

really determines the ground state |0〉 and the corresponding wave function. By projecting
the ground state |0〉 onto the position vector |q〉 and using the expression (T11.3) for a we
have:

〈q |
(√

mω

2h̄
q̂ +

ip̂√
2mh̄ω

)
|0〉 = 0. (T11.26)

We may now use the “tools” (T10.62) and (T10.63), here on the form

〈q | q̂ = q〈q | and 〈q |p̂ =
h̄

i

∂

∂q
〈q |,

which give √mω
2h̄

q +

√
h̄

2mω

∂

∂q

 〈q |0〉 = 0. (T11.27)

Here 〈q |0〉 is the wave function ψ0(q) for the ground state, and the expression in parantheses
is the operator a in the position representation (cf the discussion in section 10.3.b). (Note in
passing that the corresponding expressiont for a† has a minus sign in front of the last term).
The relation a|0〉 = 0 thus gives us the differential equation

d

dq
ψ0(q) = −mω

h̄
q ψ0(q) ,
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which is easily integrated:

lnψ0 = −mω
2h̄

q2 + lnC0 =⇒

ψ0(q) = C0 e
−mωq2/2h̄. (T11.28)

We recognize this as the wave function of the ground state. [C0 = (mω/πh̄)1/4 gives a
normalized wave function.]

Similarly, the wave functions for the excited states can be found from the formula for
|n〉 :

ψn(q) = 〈q |n〉 =
1√
n!
〈q |

(√
mω

2h̄
q̂ − ip̂√

2mh̄ω

)n
|0〉

=
1√
n! 2n

√mω
h̄

q −
√

h̄

mω

∂

∂q

n ψ0(q).

With the dimensionless variable x = q
√
mω/h̄ which is commonly used for the harmonic

oscillator we thus have

ψn(x) =
C0√
2n n!

(
x− d

dx

)n
e−x

2/2

=
(
mω

πh̄

)1/4 1√
2nn!

Hn(x) e−x
2/2 (x = q

√
mω/h̄). (T11.29)

[The last step has not been shown here, but can be taken for granted. You can of course
also check it for a few values of n.]

These results show some of the power of the algebraic method. In the next section we
shall use a similar method to find the eigenstates and the eigenvalues for angular momenta.

11.2 General quantization of angular momentum

Introductory remarks

In the preceeding section we saw that the quantization of the number operator N = a†a
could be based exclusively on the algebra [a, a†] = 1 for the operators a and a†.

We shall now use a similar algebraic method to find eigenstates and eigenvalues for a
generalized angular momentum denoted by J. As mentioned in the introduction, it then
turns out, firstly, that we are able to reproduce the results for orbital angular momenta,
with integer quantum numbers l and m (see Lecture notes 5 or 6.1 in Bransden & Joachain).
Secondly, the algebraic method furnishes a set of angular momentum states with half-integral
quantum numbers, which do not describe orbital angular motion. These states provide a
description of spin degrees of freedom, which can not be described by the ordinary wave-
function formalism. This is a triumph for our new Hilbert-space formulation of quantum
mechanics, and for the algebraic method.

Before we attempt to formulate this theory of angular momentum, it is instructive to see
how the non-Hermitian operators

L̂± ≡ L̂x ± iL̂y = ±h̄ e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
(T11.30)
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act on the “triplet” Y1m, that is, on the three angular functions

Y10 =

√
3

4π
cos θ, Y1±1 = ∓

√
3

8π
sin θ e±iφ.

As you can easily check, the operators L̂+ and L̂− then act as ladder operators, that is,
they change the magnetic quantum number m by +1 and −1, respectively:

L̂+ Y1−1 = h̄
√

2Y10, L̂− Y11 = h̄
√

2Y10,

L̂+ Y10 = h̄
√

2Y11, L̂− Y10 = h̄
√

2Y1−1,

L̂+ Y11 = 0, L̂− Y1−1 = 0.

(T11.31)

This is illustrated in the figure, where we see that the two operators take us respectively one
step up and one step down in the triplet “ladder”.

We note in particular that L̂+ applied to the top rung gives zero, and similarly when L̂− is
applied to the bottom rung (in analogy with a|0〉 = 0).

The angular-momentum algebra and some additional operator relations

We assume that we have a general angular momentum J which corresponds to the Hilbert-
space operators Jx, Jy and Jz. Our only assumptions are that these operators are Hermitian
and satisfy the fundamental angular-momentum algebra 3

[Jx, Jy] = ih̄Jz,

[Jy, Jz] = ih̄Jx, (T11.32)

[Jz, Jx] = ih̄Jy,

which is the same algebra that is found for the orbital angular momentum L = r× p (cf
Lecture notes 5 and B&J).

The example above indicates that it may be a good idea to define the operators J+ and
J−, which are each others adjoint:

J± ≡ Jx ± iJy; (J+)† = J−, (J−)† = J+. (T11.33)

3You can find a very clear discussion of this matter in Hemmer’s chapter 8, and also in chapter 1 in J.J.
Sakurai, Modern Quantum Mechanics. In this section we follow these authors and drop the “hats”̂over the
operators.
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In the same manner as for the orbital angular momentum, it is easy to show that J2

commutes with all the components of J;

[J2, Jx] = [J2, Jy] = [J2, Jz] = 0. (T11.34)

It follows that
[J2, J±] = 0. (T11.35)

Furthermore, by considering the commutators [Jz, J±], one finds that

JzJ± = J±Jz ± h̄J±. (T11.36)

In addition we note that
J+J− = J2 − J2

z + h̄Jz,

J−J+ = J2 − J2
z − h̄Jz.

(T11.37)

Simultaneous eigenvectors

Since J2 and Jz commute, we may seek to find simultaneous eigenvectors of J2 and Jz:

J2|j,m〉 = h̄2j(j + 1)|j,m〉, (T11.38)

Jz|j,m〉 = h̄m|j,m〉. (T11.39)

Here, we have written the eigenvalues as h̄2j(j + 1) and h̄m, and we are using the
numbers j and m as labels. 4 So far the only thing we know about j and m is that

|m| ≤
√
j(j + 1). (T11.40)

This is because quadratic operators like J2
z , J

2
x etc in general have non-negative expectation

values:〈
J2
z

〉
ψ

= 〈ψ |J2
z |ψ〉 = 〈ψ |J†zJz|ψ〉 = ‖Jz|ψ〉‖2 ≥ 0 =⇒

〈
J2
〉
≥
〈
J2
z

〉
. (T11.41)

This implies that the eigenvalue of J2 = J2
x + J2

y + J2
z can not be negative, and is the

reason that we may write the eigenvalue as h̄2j(j + 1), where j is a non-negative number;

j ≥ 0.

We also note that eigenvectors with differing eigenvalues are orthogonal as usual. It is
also convenient to require that they are normalized, so that

〈j′,m′ |j,m〉 = δjj′δmm′ . (T11.42)

4j(j + 1), with j ≥ 0, so far is only a fancy way of writing a non-negative number.
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Finite ladder

Suppose now that there exists one vector |j,m〉 satisfying the eigenvalue equations (T11.38)
and (T11.39), with quantum numbers j and m that we do not yet know. Following the
example above, we may then apply the ladder operators J± on the vector |j,m〉, and consider
the properties of the resulting vectors J+|j,m〉 and J−|j,m〉.

We must first check that J± really are ladder operators, as we expect. Since J2 commutes
with J±, we see at once that J± does not change the angular-momentum quantum number
j:

J2(J±|j,m〉) = J± h̄
2j(j + 1)|j,m〉 = h̄2j(j + 1)(J±|j,m〉). (T11.43)

From (T11.36) we proceed to show that J± as expected raises/lowers the magnetic quantum
number by ±1:

Jz(J±|j,m〉) = (J±Jz ± h̄J±)|j,m〉 = h̄(m± 1)(J±|j,m〉). (T11.44)

From these equations it appears that J+|j,m〉 is an eigenstate of Jz with eigenvalue h̄(m+1),
and that J−|j,m〉 is an eigenstate of Jz with eigenvalue h̄(m − 1). In the same manner,
J2

+|j,m〉 will be an eigenvector with eigenvalue h̄(m + 2), etc. Starting with the given
existence of the eigenstate |j,m〉 we can thus create new “rungs in a ladder” of states by
repeated use of J+ and J−. (In analogy with (T11.31) and with the oscillator case, these
new vectors J+|j,m〉 etc will not be normalized, but that can be corrected by dividing by
the norm, as we shall see below.)

Because |m| can not exceed
√
j(j + 1), this process of creating new rungs above and

below the given rung |j,m〉 has to stop, with a top rung |j,m1〉 and a bottom rung
|j,m0〉. This requires that

J+|j,m1〉 = 0. (T11.45)

If this is not the case, equation (T11.44) tells us that J+|j,m1〉 is an eigenvector of Jz with
eigenvalue h̄(m1 + 1), and that simply is not possible when |m1〉 is the top rung. In the
same manner

J−|j,m0〉 = 0, (T11.46)

because |j,m0〉 is the bottom rung. Note that none of this comes as a surprise, in view of
the example with the triplet set of wave functions in (T11.31).

The top and bottom rungs

Our experience in (T11.31) leads us to suspect that m1 = j and m0 = −j, and this
turns out to be the case. The key lies in the square of the norm of J−|j,m〉, which is readily
calculated:

0 ≤ ‖J−|j,m〉‖2 = (J−|j,m〉)† J−|j,m〉 = 〈j,m|J+J−|j,m〉

(T11.37)
= 〈j,m|J2 − J2

z + h̄Jz|j,m〉 = 〈j,m| h̄2[j(j + 1)−m2 +m] |j,m〉

= h̄2(j +m)(j + 1−m). (T11.47)

Using J+ we find in the same manner:

0 ≤ ‖J+|j,m〉‖2 = · · · = h̄2(j −m)(j + 1 +m). (T11.48)
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In (T11.48) the square ||J+|j,m〉||2 is either positive or equal to zero. If it is positive, it
follows from (T11.44) that

J+|j,m〉
||J+|j,m〉||

=
J+|j,m〉

h̄
√

(j −m)(j + 1 +m)
≡ |j,m+ 1〉 (T11.49)

is a normalized eigenvector of Jz with eigenvalue h̄(m+ 1), which constitutes a new rung in
the ladder, as discussed above. However, this possibility is excluded when J+ is applied to
the top rung. Hence the only possibility left is that the square of the norm is equal to zero
for J+|j,m1〉:

||J+|j,m1〉||2 = h̄2(j −m1)(j + 1 +m1) = 0.

The conclusion (which no longer comes as a surprise) is that the quantum number m for the
top rung is

m1 = j. (T11.50)

(m can not be equal to −j − 1, because of (T11.40).) In the same manner we find for the
bottom rung that

||J−|j,m0〉||2 = h̄2(j +m0)(j + 1−m0) = 0,

giving
m0 = −j. (T11.51)

Conclusion

Starting with the angular-momentum algebra and the supposed existence of the normalized
state |j,m〉, we have now used the relations

J± |j,m〉 = h̄
√

(j ∓m)(j + 1±m) |j,m± 1〉 (T11.52)

to construct a complete ladder of normalized states,
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where the magnetic quantum number varies in steps of 1 from the minimal value m0 = −j
to the maximal value m1 = j :

m = −j, −j + 1, · · · , j − 1, j. (T11.53)

This means that the distance 2j between the top and bottom rungs is an integer. What
is surprising with this result is of course that it allows for half-integral angular-momentum
quantum numbers (when 2j is an odd number),

j = 1/2, 3/2, 5/2, etc, (T11.54)

in addition to the integer quantum numbers (when 2j is an even number),

j = 0, 1, 2, etc, (T11.55)

which we know from the treatment of orbital angular momenta. Now we can state that the
supposed state |j,m〉 which was our starting point must either have half-integral j and m
or integral j and m. We also know that m must have one of the values in (T11.53). These
results are of course very promising, because such a theory allowing for only integral or
half-integral quantum numbers is precisely what we are looking for.

Does this mean that we can have half-integral orbital angular momenta? The answer
is no. This is because if we set J = L̂ = r× p̂, and L̂z = h̄

i
∂
∂φ
, then we know that the

solutions eimφ of the eigenvalue equation for L̂z become continuous only for integer values of
m and hence of l.

11.3 Orbital angular momentum, position representation

The starting point for the derivation above was the algebra (T11.32), originally found for
the orbital angular momentum L = r× p. This means of course that the formalism above
will reproduce the earlier results for the orbital angular momentum L (cf Lecture notes 5,
or B&J), when we project the abstract vectors onto the position basis

|r〉 ≡ |x, y, z〉 ≡ |r, θ, φ〉.

It is instructive to see how this works, even if nothing essentially new comes out of it.
The Hilbert-space operator L = r× p is in the position formulation represented by the

well-known operator

L = r× h̄

i
∇.

This follows from the “tools” (T10.62 – 63), which give

〈r, θ, φ| r = r 〈r, θ, φ|,

〈r, θ, φ| p =
h̄

i
∇r〈r, θ, φ|. (T11.56)

It follows that

〈r, θ, φ| Lz =
h̄

i

∂

∂φ
〈r, θ, φ|, (T11.57)
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〈r, θ, φ| Lx =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
〈r, θ, φ|, (T11.58)

〈r, θ, φ| Ly =
h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
〈r, θ, φ|, (T11.59)

〈r, θ, φ| L2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
〈r, θ, φ|, (T11.60)

〈r, θ, φ| L± =
h̄

i
e±iφ

(
±i ∂
∂θ
− cot θ

∂

∂φ

)
〈r, θ, φ|, (T11.61)

where on the right we recognize all the well-known operators from the position representation.
Combining (T11.57) with (T11.39) we have

h̄

i

∂

∂φ
〈r, θ, φ|l,m〉 = h̄m 〈r, θ, φ|l,m〉,

which is the well-known eigenvalue equation

h̄

i

∂

∂φ
ψlm(r, θ, φ) = h̄m ψlm(r, θ, φ) (T11.62)

for the wave function
ψlm(r, θ, φ) = 〈r, θ, φ|l,m〉. (T11.63)

In a similar manner we may combine (T11.60) with (T11.39), and (T11.61) with (T11.52).
Because the angular-momentum operators in these equations depend only on angles, the
equations are separable, that is, we can write

ψlm(r, θ, φ) = R(r) Ylm(θ, φ), (T11.64)

where the angular functions Ylm(θ, φ) satisfy the same equations as ψlm, as e.g.

h̄

i

∂

∂φ
Ylm(θ, φ) = h̄m Ylm(θ, φ). (T11.65)

The radial function R(r) thus far is arbitrary, as long as we only require that |l,m〉 is an
eigenvector of L2 and Lz.

5

Equation (T11.65) has the well-known solution (cf Lecture notes 5 or B&J):

Ylm(θ, φ) = Θ(θ) eimφ. (T11.66)

As you probably remember, Ylm becomes a continuous function of the azimuthal angle φ
only if m is an integer. Half-integral values of m, which are allowed according to the results
of the algebraic derivation above, give a discontinuity for φ = 0 ,

Y (θ, 2π) = −Y (θ, 0).

5We could have obtained a more complete specification of the ket vector |l,m〉 (and hence of the radial

function R(r)) by requiring that it also be an eigenvector of a rotationally invariant Hamiltonian Ĥ, with
an eigenvalue En. This eigenvalue could then be used as a third label of the vector: (|En, l,m〉 or |n, l,m〉).
However, here we are primarily interested in the properties of the angular functions, the spherical harmonics
Ylm(θ, φ).
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Thus the function does not ”bite its own tail” at this point, as it must do in order to be
continuous. For half-integral m the left-hand side of (T11.65) then becomes a delta function,
while the right-hand side is finite, and that is not allowed.

We therefore arrive at the following conclusion: Any rotational motion which can be
described classically, in terms of an orbital angular momentum L = r× p, is quantized in
terms of integral angular-momentum quantum numbers.

This means that half-integral spin states, like e.g. the electron spin S, can not be under-
stood classically, in terms of some kind of orbital angular momentum of the form L = r× p.
The lack of such a formula (and a corresponding classical model) for the electron spin S means
that this spin can not be described in the position representation of quantum mechanics.
Thus for this spin there is no formula for e.g. 〈r|Sz corresponding to (T11.57). We therefore
have to be content with a more abstract description based on the vectors |j,m〉 (or |s,m〉),
which will be used in Lecture notes 12.

Let us return briefly to the orbital angular momentum. Here the algebraic method of
course does not give any new results. It must reproduce the results which are obtained
with the differential-equation method (see Lecture notes 5, or B&J). However, the algebraic
method has some technical advatages: We may start with (T11.45). This gives

L+|l, l〉 = 0, (T11.67)

which in the position representation has the form (cf (T11.61))(
∂

∂θ
+ i cot θ

∂

∂φ

)
Yll = 0. (T11.68)

By the use of (T11.66) it turns out that the solution is

Yll(θ, φ) = Cll sin
l θ eilφ, (T11.69)

where the normalization constant can be set equal to 6

Cll =
(−1)l

2l l!

√
(2l + 1)!

4π
. (T11.70)

Now we only need to use the ladder operator L− to calculate Yl,l−1, Yl,l−2, etc, down to
Yl,−l. This is because by combining (T11.61) with (T11.52) we have:

Yl,m−1 =
1√

(l +m)(l + 1−m)
e−iφ

(
− ∂

∂θ
− cot θ

1

i

∂

∂φ

)
Yl,m. (T11.71)

Here we may replace 1
i
∂
∂φ

by m, according to (T11.66).
Note that the ladder operators L+ and L− and all the other operators on the right-hand

sides in (T11.57) – (T11.61) satisfy the same algebraic relations as the abstract operators
J+, J−, etc. Thus instead of the differential equations, one can use the algebraic technique
to obtain the spectra and eigenfunctions of L2 and Lz. The same goes for the oscillator
problem (Lecture notes 3), which can be solved using the position representations of the
operators a and a†, that is, with an algebraic method corresponding to that used in section
11.1. (See Griffiths.)

6The normalization in (T11.70) corresponds to the convention used for Ylm in Lecture notes 5.


