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Lecture notes 15

15 Semi-classical Radiation Theory
We would really like to study processes involving emission or absorption of single
photons. However, this requires quantization of the electromagnetic field, which
is treated in a more advanced course. In the present course we therefore have to
rely on the so-called semi-classical radiation theory, in which the radiation
field is treated as a classical field. The interactions between the particles and the
radiation field then correspond to certain interaction terms in the Hamiltonian,
which are treated by time-dependent perturbation theory. The particles, includ-
ing the Coulomb interactions between them, are treated quantum-mechanically.
That is why this is called a semi-classical radiation theory. The presentation
given here follows chapter 12 in Hemmer’s book quite closely. References will be
given also to relevant sections in Bransden & Joachain (B&J) and in Griffiths
(G).

15.1 Charged particle in external field

(H 12.1, B&J 11.1)

15.1.a The Schrödinger equation

If the Hamiltonian for a single particle without the electromagnetic field present is 1

Ĥ0 =
p̂2

2m
+ U(r, t),

then according to the so-called minimal-coupling recipe, the Hamiltonian in the presence
of the electromagnetic field is obtained by the substitutions

Ĥ0 → Ĥ − qΦ(r, t)

(T15.1)

p̂ → p̂− qA(r, t).

Here, q is the charge of the particle and A(r, t) and Φ(r, t) are the vector and scalar
potentials of the field, defined by

B = ∇×A and E = −∇Φ− ∂A

∂t
.

1The potential U(r, t) represents possible non-electromagnetic forces.
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This substitution gives

Ĥ − qΦ =
1

2m
(p̂− qA)2 + U(r, t).

This recipe is the same as the one used in classical mechanics. (See, e.g., Appendix A in
Hemmer.) In the absence of non-electromagnetic forces (U(r, t) = 0) we then arrive at the
following one-particle Schrödinger equation:

ih̄
∂Ψ

∂t
=
[

1

2m
(p̂− qA)2 + qΦ

]
Ψ,

(
p̂ ≡ h̄

i
∇
)
. (T15.2)

15.1.b Gauge transformations of the potentials

The physical fields

B = ∇×A and E = −∇Φ− ∂A

∂t

do not define the potentials A and Φ uniquely. Thus, if A and Φ are a suitable choice, we
may just as well replace them by a new set of potentials:

A(r, t) → A′(r, t) = A(r, t) + ∇χ(r, t),

(T15.3)

Φ(r, t) → Φ′(r, t) = Φ(r, t)− ∂χ(r, t)

∂t
,

where χ(r, t) is an arbitrary differentiable function. This so-called gauge transformation2

does not alter the fields, because

∇×A′ = ∇A + ∇×∇χ = ∇×A

and

−∇Φ′ − ∂A′

∂t
= −∇Φ− ∂A

∂t
+ (∇ ∂

∂t
− ∂

∂t
∇)χ = −∇Φ− ∂A

∂t

for an arbitrary function χ(r, t).
The freedom to make gauge transformations is in general an advantage, because it allows

us to “choose the gauge” that is most suitable for each problem. In the present context we
shall use the so-called Coulomb gauge, where we choose the vector potential in such a way
that it is divergence-free:

∇·A(r, t) = 0. (Coulomb gauge) (T15.4)

Maxwell’s equation ∇·E = ρ/ε0 then gives

∇·
(
∂A

∂t
−∇Φ

)
= −∇2Φ(r, t) = ρ(r, t)/ε0,

2The pronounciation of gauge is similar to that of cage and rage. A commonly used Norwegian term is
“juster-transformasjon”.
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which we recognize as Poisson’s equation, with the solution

Φ(r, t) =
∫ ρ(r′, t)d3r′

4πε0|r− r′|

(
Instantaneous

Coulomb potential

)
. (T15.5)

Here we note that the scalar potential Φ at r, t is given by the charge distribution ρ(r′, t) at
the same instant t. It is therefore called the instantaneous Coulomb potential. The gauge
corresponding to the choice ∇·A = 0 is therefore called the Coulomb gauge.

The fact that the Schrödinger equation involves the gauge-dependent potentials (rather
than the unique physical fields) may perhaps cause you to worry — it means in fact that
the wave function will depend on our choice of gauge. However, we shall see that this gauge
dependence enters the wave function only in terms of a phase factor. Thus, measurable
quantities like the probability density and expectation values turn out to be gauge indepen-
dent. To see how this comes about, let Ψ′ be the solution of the Schrödinger equation with
the transformed potentials,

ih̄
∂Ψ′

∂t
=
[

1

2m
(p̂− qA′)2 + qΦ′

]
Ψ′. (T15.6)

We want to find out how the solution Ψ′ of this equation is related to the solution Ψ for the
original potentials, which satisfies (T15.2),

ih̄
∂Ψ

∂t
=
[

1

2m
(p̂− qA)2 + qΦ

]
Ψ.

Inserting

A = A′ −∇χ and Φ = Φ′ +
∂χ

∂t

into the latter equation, moving the term q ∂χ
∂t

Ψ to the left side, and multiplying on both
sides by exp(iqχ/h̄), we have

eiqχ/h̄
∣∣∣∣∣ ih̄

∂Ψ

∂t
− qΨ ∂χ

∂t
=

 1

2m

(
h̄

i
∇− qA′ + q∇χ

)2

+ qΦ′

Ψ;

m

ih̄
∂

∂t

[
Ψ eiqχ/h̄

]
= eiqχ/h̄

 1

2m

(
h̄

i
∇− qA′ + q∇χ

)2

+ qΦ′

Ψ. (T15.7)

Since
h̄

i
∇ f(r, t)eiqχ/h̄ = eiqχ/h̄

(
h̄

i
∇ + q∇χ

)
f(r, t),

we have the identity

eiqχ/h̄
(
h̄

i
∇− qA′ + q∇χ

)
f =

(
h̄

i
∇− qA′

)
eiqχ/h̄f,

which may be used twice to move the exponential function in (T15.7) to the right. The
result is

ih̄
∂

∂t

[
Ψ eiqχ/h̄

]
=

[
1

2m
(
h̄

i
∇− qA′)2 + qΦ′

]
Ψ eiqχ/h̄. (T15.8)
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We can conclude that (T15.6), with the transformed potentials, is satisfied by

Ψ′ = Ψ eiqχ/h̄.

Thus, as announced, the two wave functions differ only by a phase factor. The freedom to
multiply the wave function by a global phase factor (independent of r and t) is something
we learnt about a long time ago. What we see here, is that we may even multiply the
wave function by a local phase factor exp[iqχ(r, t)/h̄] if we compensate by adjusting the
potentials accordingly; we are allowed to make the gauge transformation

Ψ(r, t) → Ψ′(r, t) = Ψ(r, t) exp[iqχ(r, t)/h̄],

A(r, t) → A′(r, t) = A(r, t) + ∇χ(r, t), (T15.9)

Φ(r, t) → Φ′(r, t) = Φ(r, t)− ∂χ(r, t)

∂t
.

15.2 The field as a perturbation

(H 12.2, B&J 11.1)

15.2.a Interaction terms

Here we consider a charged particle together with a pure radiation field. This means that
there is no “external” charge distribution ρ(r, t). Thus, Φ(r, t) equals zero in the Coulomb
gauge (∇·A = 0). Then we may write the Hamiltonian as

Ĥ =
1

2m
(p̂− qA)2 = Ĥ0 + Ĥ ′,

where Ĥ0 = p̂2/2m and

Ĥ ′ = Ĥ − Ĥ0 =
1

2m

[
(p̂− qA)2 − p̂2

]
= − q

2m
(p̂·A−A·p̂) +

q2A2

2m
.

In the Coulomb gage, the momentum operator commutes with the vector potential; for an
arbitrary function f(r, t) we have

p̂·A f(r, t) =
h̄

i
∇(Af) =

h̄

i
(∇·A)f + A· h̄

i
∇f = A·p̂ f(r, t). (T15.10)

Thus, the interaction between the charged particle and the radiation field is represented by
the interaction terms

Ĥ ′ = − q

m
A·p̂ +

q2A2

2m
≡ Ĥ ′1 + Ĥ ′2. (T15.11)
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For a system of particles (like e.g. the hydrogen atom), we may similarly write

Ĥ = Ĥp + Ĥ ′, (T15.12)

where

Ĥp =
∑
i

p̂2
i

2mi

+ VC(r1, r2, · · ·) (T15.13)

is the Hamiltonian in the absence of the radiation field (but including the Coulomb
interaction terms between the charged particles), and

Ĥ ′ =
∑
i

{
− qi
mi

A(ri, t)·p̂i +
q2
i

2mi

[A(ri, t)]
2

}
(T15.14)

represents the interaction between the charged particles and the radiation field.

In what follows we shall treat Ĥ ′ as a perturbation. Thus the initial and final states will be
eigenstates of Ĥp. We shall limit ourselves to considering processes for which the transition
probability is given dominantly by the first-order contribution due to the term

Ĥ ′ = − q

m
A·p̂, (T15.15)

and for which the A2 term gives negligible contributions.

15.2.b The radiation field

Applying the Coulomb gauge (∇·A = 0) for the radiation field, we see from (T15.5) that far
away from the sources we may set the scalar field Φ(r, t) equal to zero. Thus the physical
fields

E = −∂A(r, t)

∂t
and B = ∇×A(r, t)

may both be expressed in terms of the vector potential A(r, t). This potential can be written
as a superposition of plane harmonic waves of the type

A(r, t) ∝ ei(k·r−ωt)ek (ω = ck).

Here, the unit vector ek is a polarization vector (giving the direction of E). We shall consider
a simple monochromatic wave

A(r, t) = 2A0 ek cos(k·r− ωt) = A0

(
ek e

i(k·r−ωt) + complex conj.
)
, (T15.16)

corresponding to the fields

E = −∂A

∂t
= −2ωA0 ek sin(k·r− ωt)

(T15.17)

B = ∇×A = −2A0(k× ek) sin(k·r− ωt).

Here, we note that due to the condition

∇·A = A0 ek·∇ cos(k·r− ωt) = −A0 sin(k·r− ωt) ek·k = 0, (T15.18)

the polarization vector ek is perpendicular to the propagation vector k. Thus, E is transverse
to k, and B is transverse to k and E , as shown in the figure on the left.
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As shown in the figure on the right, we may choose to work with two real orthogonal
polarization vectors e1 and e2. 3

We shall later need the relation between the amplitude A0 and the energy density of the
plane wave, which is

1
2
ε0E2 +

1

2µ0

B2 = 1
2
ε0(E2 + c2B2) (µ0ε0 = 1/c2)

= 1
2
ε0(2A0)2 sin2(k·r− ωt)(ω2 + c2k2).

Averaged over time the energy density of the harmonic wave (T15.15) then is

u = 2ε0A
2
0ω

2, (T15.19)

corresponding to an energy flux I = u c = 2ε0A
2
0ω

2c.

15.3 Transitions between atomic states

(H 12.3, B&J 11.2, G 9.2)
In sections 14.5 and 14.6 we considered respectively the cases of discrete → continuous

transitions (e.g. ionization) and continuous → continuous transitions (e.g. scattering on a
static potential) and established Fermi’s golden rule. We shall now consider the case of
discrete → discrete transitions, where an electromagnetic wave induces either excitation of
an atom (via absorption) or de-excitation (via stimulated emission):

absorption stimulated emission

ωfi =
E2 − E1

h̄
> 0 ωfi =

E1 − E2

h̄
< 0

We assume (to begin with) that the the incident beam of radiation is a mixture of harmonic
waves with a quasi-continuous frequency distribution, so that the number of waves (i.e.
frequencies) in the interval ∆ω is ρ(ω)∆ω. Each of these waves is of the type (T15.16),

3If we want to desribe a wave with e.g. circular polarization, we have to use a complex polarization
vector.
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with an amplitude A0(ω). We assume that they all have the same direction of propagation
k̂ = k/k and polarization ek.

With q = −e (the electron charge), the perturbation term corresponding to one har-
monic wave is given by (T15.15) and (T15.16) and may be written on the standard form
(T14.24) for a harmonic perturbation,

Ĥ ′1 = − q

m
A·p̂ =

e

m
A0(ω) p̂·

(
ek e

i(k·r−ωt) + c.c.
)

≡ V̂(r, ω)e−iωt + V̂†(r, ω)e+iωt,

where
V̂(r, ω) =

e

m
A0(ω) ek·p̂ eik·r. (T15.20)

15.3.a Stimulated emission as probable as absorption

According to (T14.35–37), the transition rates for stimulated emission and absorption due
to one harmonic wave are equal, given by

w2→1 = w1→2 =
2π

h̄
|V21ω)|2δ(E2 − E1 − h̄ω)

=
2π

h̄2 |V21|2δ(ω21 − ω)
(
ω21 =

E2 − E1

h̄

)
.

But what happens when we have a whole bunch of harmonic waves in the beam? The answer
is that, provided that the radiation is incoherent, we can add the transition rates for all
the waves; there is no interference between the different harmonic waves. The same holds
for the energy density in the beam. Thus with ρ(ω)dω frequencies in the interval dω, we
have from (T15.19) that

u(ω)dω = 2ε0A
2
0(ω)ω2 · ρ(ω)dω, (T15.21)

where u(ω) is the energy density per unit angular frequency (the spectral energy density).
For the total transition rate we get

w2→1 = w1→2 =
2π

h̄2

∫
|V21|2δ(ω21 − ω) · ρ(ω)dω

=
2π

h̄2

e2

m2
A2

0(ω21)ρ(ω21)
∣∣∣ek·〈ψ2 |p̂ eik·r|ψ1〉

∣∣∣2 .
Using (T15.21), we have

A2
0(ω21)ρ(ω21) =

u(ω21)

2ε0ω2
21

,

which allows us to express this result in terms of the spectral energy density u(ω):

w2→1 = w1→2 =
π

h̄2

e2

m2

u(ω21)

ε0ω2
21

∣∣∣ek·〈ψ2 |p̂ eik·r|ψ1〉
∣∣∣2 . (T15.22)
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15.3.b The dipole approximation

The Bohr frequency ω21 corresponding to a transition between atomic states typically is of
the order of

ω21 =
E2 − E1

h̄
∼ 10 eV

h̄
∼ 1016s−1.

The transitions 1 → 2 and 2 → 1 thus are induced by radiation with a wavelength of the
order of

λ =
2πc

ω
∼ 10−7m,

which is a factor 103 larger than the radii of the orbitals ψ1 and ψ2. In the matrix element

〈ψ2 |p̂eik·r|ψ1〉 =
∫
ψ∗2 p̂ eik·rψ1 d

3r

we may therefore expand the exponential exp(ik·r) in a rapidly converging series:

eik·r = 1 + ik·r− 1
2
(k·r)2 + · · · .

Since k·r ∼ 2πr/λ << 1, the first non-vanishing term in the resulting matrix element will
be a very good approximation. The first term, i.e. exp(ik·r) ≈ 1, gives the so-called
electric-dipole approximation. If this term does not contribute, the next term, ik·r,
corresponding to magnetic-dipole and electric-quadrupole radiation, will of course give a
much smaller transition rate.

The electric-dipole approximation

For the case that the first term (eik·r ≈ 1) does contribute, we may simplify the matrix
element as follows: Firstly, we remember (cf section 15.2.a) that the states ψ1 and ψ2 are
eigenstates of the unperturbed part of the Hamiltonian (the “particle part” Ĥp):

Ĥpψn =

[
p̂2

2m
+ VC(r)

]
ψn = Enψn; n = 1, 2. (T15.23)

Secondly, we note that

[Ĥp, x] =
1

2m
[p̂2
x, x] =

1

2m
{p̂x[p̂x, x] + [p̂x, x]p̂x} =

h̄

im
p̂x, (T15.24)

which can be generalized to

p̂ =
im

h̄
[Ĥp, r]. (T15.25)

In the electric-dipole approximation (often simply called the dipole approximation), we then
have from (T15.23)

〈ψ2 |p̂ eik·r|ψ1〉 ≈ 〈ψ2 |p̂|ψ1〉 =
im

h̄
〈ψ2 |Ĥpr− rĤp|ψ1〉

=
im

h̄
〈ψ2 |E2r− rE1|ψ1〉 = im

E2 − E1

h̄
〈ψ2 |r|ψ1〉

≡ imω21 d21, (T15.26)
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where
d21 ≡ 〈ψ2 |r|ψ1〉 =

∫
ψ∗2 rψ1 d

3r (T15.27)

is called the dipole moment of the transition. Thus, in the dipole approximation, the
transition rates for absorption and stimulated emission are given by

w1→2 = w2→1 =
πe2

h̄2ε0
u(ω21) |ek·d21|2 ,

(
electric-dipole
approximation

)
(T15.28)

where u(ω21) is the spectral energy density (energy density per unit angular frequency) in
the beam.

15.4 Spontaneous emission via Einstein’s equilibrium ar-

gument

(H 12.4, B&J 11.3, G 9.3)
The equality of the transition rates for absorption and stimulated emission was proved

already in 1917 by Einstein, eight years before the advent of quantum mechanics.

15.4.a Einsteins equilibrium argument

As discussed in section 8.3.d in Lecture notes 8, Einstein considered an ensemble of atoms in
equilibrium with thermal radiation at a temperature T . Let us briefly review his argument.
At equilibrium the radiation energy density per unit angular frequency is given by Planck’s
law (T8.53) as

u(ω) =
u(ν)dν

dω
=
h̄ω3

π2c3

1

eh̄ω/kT − 1
. (T15.29)

Furthermore, the ratio between the number of atoms in the states ψ1 and ψ2 is given by the
Boltzmann factor

N1

N2

= e−i(E1−E2)/kT = eh̄ω/kT , (T15.30)

where ω = ω21. For each atom in the state ψ2, there is a certain transition rate wsp
2→1 = A

of spontaneous emission and de-excitation to the state ψ1. This rate is independent of
the temperature and thus occurs even in the absence of radiation. The rate of absorption,
B1→2u(ω), on the other hand, is proportional to u(ω). The same turns out to be the case
for the rate of stimulated emission, B2→1u(ω). This is how the three Einstein coefficients,
A, B1→2 and B2→1, come into play.
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induced by u(ω) independent of u(ω)

Rates per atom: B1→2 u(ω) B2→1 u(ω) A

Total rates: N1B1→2 u(ω) N2B2→1 u(ω) N2A

At equilibrium, the total rates of emission and absorption must balance each other. Using
(T15.30), we get

dN1

dt
= N2(A+B2→1)u(ω)−N1B1→2 u(ω)

= N2

[
A+B2→1u(ω)− eh̄ω/kTB1→2 u(ω)

]
= 0,

or, solving for u(ω),

u(ω) =
A

B1→2

1

eh̄ω/kT −B2→1/B1→2

.

Comparing with (T15.29), we see that

B1→2 = B2→1 ≡ B and A =
h̄ω3

π2c3
B1→2. (T15.31)

Thus, Einstein’s results may be summarized as follows:

The transition rate B2→1 u(ω) of stimulated emission is
exactly equal to the rate of absorption, B1→2 u(ω), that
is, B2→1 = B1→2,

(T15.32)

and

The ratio between the rates of spontaneous emission
and absorption (or stimulated emission) is given by

A

B1→2 u(ω)
=
h̄ω3

π2c3

1

u(ω)
= eh̄ω/kT − 1.

(T15.33)
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15.4.b Approximate result for B1→2 = B2→1

In 1917, before quantum mechanics, Einstein was only able to find the ratios between his
coefficients. We are now in a position to find the size of the rates for absorption and
stimulated emission, using the quantum-mechanical results calculated for the radiation beam
in section 15.3.b.

Contrary to the beam, the thermal radiation is isotropically distributed over all angles,
and it is of course also unpolarized.

directed polarized beam thermal radiation

Let us therefore change the scene and consider the case on the right, where the energy density
u(ω) per unit angular frequency is distributed isotropically. We must then take the average
of the result for the beam,

w1→2 = w2→1 =
πe2

h̄2ε0
u(ω21)|ek·d21|2,

over all directions of k and over polarizations.

This corresponds to averaging |ek·d21|2 = |d21|2 cos2 θ over all directions of d21. With 4

cos2 θ =
1

4π

∫ 2π

0
dφ
∫ 1

−1
d(cos θ) cos2 θ =

1

3

4The factor 1/3 holds also for the case where d21 is complex, and where <e(d21) and =m(d21) point at
different angles (θR and θI) with respect to ek. Then

|ek·(<e(d21) + i=m(d21))|2 = |ek·<e(d21)|2 + |ek·=m(d21)|2

= |<e(d21)|2 cos2 θR + |=m(d21)|2 cos2 θI .

Averaging over cos2 θR and cos2 θI , we get

|<e(d21)|2 · 1

3
+ |=m(d21)|2 · 1

3
=

1

3
|d21|2, q.e.d.
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we simply get the result

w1→2 = w2→1 =
πe2

3h̄2ε0
u(ω21)|d21|2 (isotropic case) (T15.34)

for the rates of absorption and stimulated emission in the case where u(ω21) is isotropically
distributed.

So, now we are one step ahead of Einstein: For the size of the B-coefficient our result
(to first order in the perturbation, and in the dipole approximation) is

B1→2 =
w1→2

u(ω21)
=

πe2

3h̄2ε0
|〈ψ2 |r|ψ1〉|2 = B2→1. (T15.35)

Can we rely on this result, which has been derived using semi-classical radiation theory?
The answer is yes: The result agrees with that obtained using non-relativistic quantum
electrodynamics, where also the electromagnetic field is quantized, leading to the concepts
of creation and annihilation of photons.

15.4.c Approximate result for spontaneous emission

Can our semiclassical theory also be used to obtain the rate of spontaneous emission? The
answer is no: In the absence of radiation, there is no perturbation and hence no de-excitation,
according to the semi-classical theory.

Here, we are rescued by the second of the Einstein relations above. According to Ein-
stein’s equilibrium argument, de-excitation via spontaneous emission does occur, at a rate

wsp
2→1 = A =

h̄ω3
21

π2c3
B1→2 =

e2ω3
21

3πε0h̄c3
|d21|2

or, with α = e2/(4πε0h̄c) ≈ 1/137.036,

wsp
2→1 = A = α

4ω3
21

3c2
|〈ψ2 |r|ψ1〉|2,

(
rate of spontaneous

emission

)
(T15.36)

valid to first order in the perturbation and in the electric-dipole approximation (as the other
results).

Can this result be obtained directly? Yes, if we quantize the electromagnetic field as just
mentioned, and apply first-order perturbation theory, we can calculate the rate of sponta-
neous de-excitation from ψ2 to ψ1, where a photon with polarization ek is emitted into a
solid angle dΩ, as

dwsp
2→1 =

α

2π

ω21

m2c2

∣∣∣ e∗k ·〈ψ1 |e−ik·r p̂ |ψ2〉
∣∣∣2 dΩ

=
α

2π

ω21

m2c2

∣∣∣ ek·〈ψ2 | eik·r p̂ |ψ1〉
∣∣∣2 dΩ.

Introducing the dipole approximation (cf (T15.26)), 〈ψ2 |eik·r p̂ |ψ1〉 = imω21〈ψ2 |r|ψ1〉, we
can simplify this to

dwsp
2→1

dΩ
= α

ω3
21

2πc2
|ek·〈ψ2 |r|ψ1〉|2 (dipole approx.). (T15.37)
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A small exercise:

e1k in the plane through k̂ and d21 =⇒ e2k ⊥ d21

Suppose that 〈ψ2 |r|ψ1〉 = d21 is real, and consider a photon emitted in the
direction k̂.
a) Why is the photon polarized in the plane through k̂ and d21? [Hint: Let e1k

be a polarization vector in this plane, and let e2k be orthogonal to e1k, k̂ and
hence to d21. What is then dwsp

2→1/dΩ for photons with ek = e1k?]
b) Express dwsp

2→1/dΩ in terms of the angle θkd between k̂ and d21. Show that
(T15.36) follows by integrating this expression over angles.

15.5 Selection rules for electric-dipole radiation

(H 12.5, B&J pp 530–541, G 9.3)

15.5.a Selection rules

As we have just seen, the transition rates in the electric-dipole approximation are governed
by the matrix elements (“dipole moments”)

dfi =
∫
ψ∗f (r) rψi(r)d3r.

The selection rules (in the electric-dipole approximation) are simple rules telling us when
these matrix elements are different from zero.

The simplest case is that of particles moving in a spherically symmetric potential, with
an initial state

ψi(r) = Rnl(r)Ylm(θ, φ).

It turns out that dfi differs from zero only for a selection of final states

ψf (r) = Rn′l′(r)Yl′m′(θ, φ),

such that the changes of the quantum numbers are limited to

∆m ≡ m′ −m = 0,±1 and ∆l ≡ l′ − l = ±1.

(
selection rules in the electric-

dipole approximation

)
(T15.38)
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For transitions which do not satisfy both these conditions, the matrix elements dfi are equal
to zero. Such transitions are “forbidden” in the electric-dipole approximation. Of course
they do not have to be absolutely forbidden; the rules above only tell us that the first term in
the expansion exp(±iik·r) = 1± ik·r + · · · does not contribute. This means that for such a
transition the rate will be much smaller than for those which are allowed in the electric-dipole
approximation.

How the rules are proved

Starting with the identity

r = êx r sin θ cosφ+ êy r sin θ sinφ+ êz r cos θ

= r

√
4π

3

[
êz Y10 −

êx − iêy√
2

Y11 +
êx + iêy√

2
Y1,−1

]
, (T15.39)

we note that the matrix element dfi can be written as a radial integral

Irad ≡
∫ ∞

0
Rn′l′(r) r Rnl(r)r

2dr (T15.40)

multiplied by a linear combination of three angular integrals of the type

Jm′′ ≡
√

4π

3

∫
Y ∗l′m′ Y1m′′YlmdΩ, (T15.41)

where m′′ = 0,+1 or −1. Since the parity of Ylm is (−1)l, we note at once that the parity
of the angular integrand is

(−1)l
′+1+l = (−1)2l(−1)l

′−l+1 = (−1)∆l+1.

Thus, the integrand is antisymmetric (and Jm′′ and hence dfi are equal to zero) unless ∆l is odd.
Next, we note that the angular integral Jm′′ contains the factor∫ 2π

0
eiφ(m−m′+m′′)dφ =

∫ 2π

0
eiφ(m′′−∆m)dφ = 2πδm′′,∆m,

which is zero unless ∆m = m′′ = 0,±1. This proves the ∆m part of the selection rules, and
allows us to write the matrix element as

dfi = Irad

(
êz J0 δm′,m −

êx − iêy√
2

J1 δm′,m+1 +
êx + iêy√

2
J−1δm′,m−1

)
, (T15.42)

where J0, J1 and J−1 are given by (T15.41).
It remains to show why ∆l is restricted to ±1. A simple argument goes as follows: If the

initial state is an s-state, with Ylm = Y00 = 1/
√

4π, we simply have

Jm′′ =
√

1/3
∫
Y ∗l′m′Y1m′′dΩ =

√
1/3 δl′,1δm′,m′′ ,

showing that the final state is a p-wave (∆l = 1).
For l ≥ 1, we may use our experience with the addition of angular momenta. The

product Y1m′′Ylm occurring in (T15.41) may be regarded as a product state resulting from
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separate measurements of the z-components of two angular momenta (with l1 = 1 and l2 = l).
According to the triangular inequality, the “old” product states can be linearly combined
to “new” states with a resulting quantum number l − 1, l and l + 1. Inverting these linear
combinations, we can of course express the product state in terms of the “new” states, as
follows

Y1m′′Ylm = c1 Yl+1,m+m′′ + c2 Yl−1,m+m′′ .

(There is no term Yl,m+m′′ on the right because it has the wrong parity.) Inserting this expres-
sion into (T15.41), we see that the rule ∆l ≡ l′ − l = ±1 follows from the orthogonality of
the spherical harmonics.

A small exercise:
a) The product

Y11Y20 = −
√

3

8π
sin θ eiφ ·

√
5

16π
(3 cos2 θ − 1)

may be expressed in terms of two spherical harmonics. Which are these?
b) Check that

Y10Y20 =
3

2

√
3

35π
Y30 +

√
1

5π
Y10.

c) What is the direction of dfi for a transition with ∆m = 0?

15.5.b Examples, for hydrogen

Atomic spectra (spectral lines) provide the best measurements of atomic energy levels. The
figure below illustrates (electric-dipole) transitions to the ground state 1s (n = 1, l = 0) for
hydrogen. The initial state must then be a p-state, so that ∆l = −1. The lowest of the
photon energies here is approximately 10.2 eV. Therefore the entire series of these spectral
lines are in the ultraviolet region. These lines are known as the Lyman series.

Transitions to 2s and 2p
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Here the energy differences

∆E = −1
2
α2mc2

(
1

22
− 1

n2

)
(n = 3, 4, · · ·)

are of the order of 2 eV, corresponding to spectral lines in the visible part of the spectrum.
These lines are known as the Balmer series (Balmer, ca 1885), which was the basis for
Balmer’s empirical formula (see Lecture notes 1), which in turn formed part of the back-
ground for the Bohr model.

Cascade

As illustrated above, there is no restriction on ∆n, the change of the principal quantum
number. However, it happens (e.g. when free electrons and protons recombine) that a
hydrogen atom is found in a highly excited state where l has the maximal value n− 1.

Then, as illustrated in the figure, electric-dipole transitions are only possible for ∆n = ∆l = −1.
This way we get a whole cascade of transitions, with spectral lines corresponding to a whole
series of energy differences between neighbouring levels.

15.5.c Lifetime. Line width

It is important to remember that the spontaneous transition rate (T15.36),

wsp
i→f = α

4ω3
if

3c2
|dfi|2 ,

gives the probability per unit time for transition from the state ψi to the state ψf . This
means that we are not able to predict what happens with a single atom in an excited state
ψi; we cannot tell when the photon will be emitted, and we don’t know in which direction.

So, in order to compare our theory with experiments, we must consider an ensemble of
a large number of atoms. With N(t) atoms in the state ψi at the time t, the theory predicts
that the number that is expected to decay into ψf in the time interval (t, t+ dt) is

dNf = N(t)wsp
i→fdt.

Summing over the possible final states ψf , we then find that the expected change of N(t) in
the interval dt is

dN = −
∑
f

dNf = −N(t)wi dt,
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where

wi =
∑
f

wsp
i→f (T15.43)

is the total rate of de-excitation for the state ψi. Then,

dN

N(t)
= −wi dt,

which is readily intergrated to

N(t) = N(0) e−wit ≡ N(0) e−t/τi ; τi ≡
1

wi
. (T15.44)

Here, τi ≡ 1/wi is called the lifetime for the state ψi.

A small exercise:
Show that τi indeed is the average lifetime of the ensemble N(0). [Hint: The
expected number “dying” in the interval (t, t+ dt) is |dN | = wiN(t)dt.]

As an example we consider the hydrogen atom, with the initial state ψi = ψ210. Then there
is only one possible transition, to the ground state ψ100. With a dipole moment |dfi| of the
order a0, and a frequency ω21 ∼ 1016 s−1, we then get a transition rate

wi→f ∼ α
ω3

21

c2
|a0|2 ∼ 10−2 1048

1017
10−20 s−1 = 109 s−1.

The lifetime of this state then is of the order of

τi =
1

wi
∼ 10−9 s.

We notice that the lifetime is much longer than the natural atomic period T = 2π/ω21 ∼
10−16 s.

As another example, let the initial state be ψ410.

The possible final states (allowed in the dipole approximation) then are the three 3d-states
ψ320, ψ321 and ψ32,−1, together with the s-states ψ300, ψ200 and ψ100. Each of these contribute
to the total transition rate (T15.43).

Note that the transition from ψ200 to ψ100 is “forbidden” in the electric-dipole approxi-
mation. De-excitation here is effected mainly by two-photon emission, with a rate which is
much smaller than in the example above. In fact, the lifetime is as long as ∼ 0.1 s. Such
long-lived states are often called meta-stable states.
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Natural line width

In classical radiation theory, if a charge undergoes a damped oscillation with frequency ω0

and a damping time τ , then also the amplitude of the radiated wave will be damped. Fourier
analyzing this signal, we then get a frequency distribution with a peak at ω0, but with a finite
width ∆ω of the order 1/τ . This width corresponds to a finite line width ∆λ = λ∆ω/ω.

It turns out that quantum mechanics gives a similar result for spontaneous emission. As
an example, in the spontaneous de-excitation 2p→ 1s in hydrogen, the spread in the energy
of the emitted photons is5 h̄∆ω = h̄wi, where wi is the transition rate. More precisely, it
can be shown that the probability distribution of the photons emitted goes as

P (h̄ω) ∝ 1

(h̄ω − h̄ω21)2 + (1
2
h̄wi)2

, (T15.45)

where wi = wsp
2→1 = 1/τi is the spontaneous transition rate from (any of) the 2p state(s)

to the ground state. This is called a Lorentzian probability distribution.

As illustrated in the figure, the “full width at half maximum” of the peak is ∆ω = wi.
The interpretation of this result (using energy conservation) is that the energy of the initial
excited state is not sharp,6 but has a probability distribution with a width

∆E2 = h̄∆ω = h̄wi = h̄/τi. (T15.46)

It is fairly common to call the width ∆E2 the energy uncertainty of the 2p level, and to call
the relation

∆E · τ = h̄

a time-energy uncertainty relation, but that may be somewhat misleading.7

5See, e.g., section 11.5 in Bransden & Joachain, or W. Heitler, The Quantum Theory of Radiation (3rd

edition), Chap. V, §18 p 181..
6Note that the initial state ψ2 is an eigenstate of the “particle part” Ĥp of the Hamiltonian, but not of

the total Hamiltonian Ĥ. Therefore the initial energy can not be sharp.
7Stricly speaking, ∆E is not an ordinary uncertainty, because the root-mean-square deviation does not

exist for the distribution (T15.45). Also, time is not an observable, just a parameter.
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We note that the smaller the liftime of an excited state is, the larger its energy width is.
This is important in particle physics, where most of the “elementary” particles have lifetimes
of the order of 10−23 s, and hence an energy width of the order of 100 MeV, and a mass width
∼100 MeV/c2, which can be up to 10 percent of the particle mass.

For excited atomic levels, the relative widths become small. Thus, for the example above
the relative width is given by

∆ω

ω
=
wi
ω
∼ 109 s−1

1016 s−1
≈ 10−7.

The corresponding width ∆λ of the wavelength is called the natural line width, and is in
principle measurable in atomic spectra. However, observed spectral lines usually have much
greater widths than this, due to collisions and Doppler broadening.


