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SOLUTION ASSIGNMENT 4

Question 1

a) We have z = r − s for the vertical position of mass 2, and ż = ṙ since s is constant. The various energy
contributions are:

T1 =
1

2
m

(
ṙ2 + r2θ̇2

)
V1 = 0

T2 =
1

2
mṙ2

V2 = mgz = mg(r − s)

This gives the Lagrangian

L = T1 + T2 − V1 − V2 = mṙ2 +
1

2
mr2θ̇2 −mg(r − s).

b) Lagrange equation for θ:

∂L

∂θ
= 0

∂L

∂θ̇
= mr2θ̇

⇒ d

dt

(
mr2θ̇

)
= 0

In other words, the angular momentum ℓ = mr2θ̇ is conserved.

Lagrange equatin for r:

∂L

∂r
= mrθ̇2 −mg

∂L

∂θ̇
= 2mṙ

⇒ 2mr̈ −mrθ̇2 +mg = 0

We replace θ̇ = ℓ/mr2 and find

2mr̈ − ℓ2

mr3
+mg = 0.

c) Circular motion if r̈ = 0. Then

ℓ2

mr30
−mg = 0 ⇒ r0 = (ℓ2/m2g)1/3.

Direct argument: Circular motion if the centrifugal force mr0θ̇
2 balances the weight mg of the mass below

the table, i.e., r0θ̇
2 = g. With ℓ = mr20 θ̇, the same expression for r0 is found.

d) The radial equation is, with r = r0 + ρ:

2m ¨r0 + ρ− ℓ2

m(r0 + ρ)3
+mg = 0.
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Here, r̈0 = 0, and to leading order
1

(r0 + ρ)3
=

1

r30

(
1− 3ρ

r0

)
.

Thus,

2mρ̈− ℓ2

mr30

(
1− 3ρ

r0

)
+mg = 0.

In this equation, the constant terms cancel since

ℓ2

mr30
=

ℓ2

m

m2g

ℓ2
= mg.

The equation for ρ is therefore

ρ̈+
3g

2r0
ρ = 0.

This is a harmonic oscillator with angular frequency ω =
√
3g/2r0.

Question 2

The force on the particle in x = 0, F = −∇V , acts in the negative x direction. Hence, the y component of
the momentum is conserved:

mv0 sinα = mv sinβ ⇒ sinα

sinβ
=

v

v0
.

The total energy E is also conserved:

1

2
mv20 =

1

2
mv2 + V0 ⇒ v

v0
=

√
1− 2V0

mv20
=

√
1− V0

E
= n.

since E = mv20/2. Combination of these equations gives

sinα

sinβ
=

√
1− V0

E
= n.

Question 3
a) Each mass m1 can perform circular motion in the plane with radius a and angular velocity θ̇, and circular
motion around the z axis with radius a sin θ and angular velocity ϕ̇ = Ω. The mass m2 can move along the
z axis with velocity ż. Since its position relative to A is z = −2a cos θ, its velocity is ż = 2aθ̇ sin θ. The
total kinetic energy is therefore

T = 2 ·
(
1

2
m1a

2θ̇2 +
1

2
m1a

2 sin2 θΩ2
)
+

1

2
m2

(
2aθ̇ sin θ

)2
= m1a

2(θ̇2 + sin2 θΩ2) + 2m2a
2θ̇2 sin2 θ.

Potential energy, with V = 0 in A:

V = V1 + V2 = −2m1ga cos θ − 2m2ga cos θ.

Lagrangian:
L = T − V = m1a

2(θ̇2 + sin2 θΩ2) + 2m2a
2θ̇2 sin2 θ + 2(m1 +m2)ga cos θ.
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b) We perform the derivatives and establish the Lagrange equation:

∂L

∂θ
= m1a

2Ω2 · 2 sin θ cos θ + 2m2a
2θ̇2 · 2 sin θ cos θ − 2(m1 +m2)ga sin θ

= a2(m1Ω
2 + 2m2θ̇

2) sin 2θ − 2(m1 +m2)ga sin θ

∂L

∂θ̇
= 2a2θ̇(m1 + 2m2 sin

2 θ)

d

dt

∂L

∂θ̇
= 2a2θ̈(m1 + 2m2 sin

2 θ) + 2a2θ̇2 · 4m2 sin θ cos θ

= 2a2θ̈(m1 + 2m2 sin
2 θ) + 4a2m2θ̇

2 sin 2θ

Lagrange equation:

2a2θ̈(m1 + 2m2 sin
2 θ) + 4a2m2θ̇

2 sin 2θ − a2(m1Ω
2 + 2m2θ̇

2) sin 2θ + 2(m1 +m2)ga sin θ = 0.

Or with ω2
0 = 2g/a:

2θ̈(m1 + 2m2 sin
2 θ) + 4m2θ̇

2 sin 2θ − (m1Ω
2 + 2m2θ̇

2) sin 2θ + ω2
0(m1 +m2) sin θ = 0.

Rotational equilibrium means rotation around the z axis with constant θ = θ0, i.e., θ̇ = θ̈ = 0:

−m1Ω
2 sin 2θ0 + ω2

0(m1 +m2) sin θ0 = 0,

or
sin θ0

[
ω2
0(m1 +m2)− 2m1Ω

2 cos θ0
]
= 0.

There are two solutions, θ0 = 0 and

cos θ0 =
(m1 +m2)ω

2
0

2m1Ω2
.

Clearly, the right hand side of this equation cannot be larger than 1, so a nonzero value of θ0 is only possible
if Ω exceeds the threshold value

Ωmin =

√
m1 +m2

2m1
ω0.

c) We set m1 = m2 = m and collect terms that contain θ̇ as a kinetic energy and terms without θ̇ as an
effective potential for the one-dimensional problem with θ as coordinate:

L = ma2(1 + 2 sin2 θ)θ̇2 − V ′(θ)

with
V ′(θ) = −ma2(Ω2 sin2 θ + 2ω2

0 cos θ).

We assume Ω > ω0. (With equal masses, Ωmin = ω0 above.) Zero derivative of V ′ now corresponds to
equilibrium:

dV ′

dθ
= −ma2(2Ω2 sin θ cos θ − 2ω2

0 sin θ) = 0.

Solutions are θ = 0 and cos θ = ω2
0/Ω

2, in agreement with what we found in b).

Check yourself whether these values of θ correspond to stable or unstable equilibria when Ω > ω0. If Ω < ω0,
we know that θ = 0 is the only equilibrium angle, which must then be stable.
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