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SOLUTION ASSIGNMENT 6

Question 1

The total energy is (see lecture notes)

E =
1

2
m
(
ṙ2 + (rθ̇)2

)
+ V (r).

In a central potential, mr2θ̇ = ℓ is a conserved quantity, so we get

E =
1

2
mṙ2 +

(
ℓ2

2mr2
+ V (r)

)
=

1

2
mṙ2 + Veff(r).

This is an effective 1D problem, with an effective potential

Veff(r) = V (r) +
ℓ2

2mr2

For the particle to reach the center, it must have sufficiently high energy to overcome the potential barrier,
i.e. E > Veff(r → 0). This can be written as

Er2 > r2V (r) +
ℓ2

2m
, r → 0.

The l.h.s. goes to zero, so that the condition becomes

(r2V (r))r→0 < − ℓ2

2m
.

This can be fulfilled with the potential −k/r2, with k > ℓ2/2m, or with V (r) = −A/rn, with n > 2 and A
a positive constant.

Question 2

Figure 1: Hard sphere scattering, geometry.

a) The scattering angle θ satisfies 2Ψ + θ = π. From the figure, we see that the impact parameter is given
by s = a sin(π/2− θ/2) = a cos(θ/2), so that∣∣∣∣dsdθ

∣∣∣∣ = a

2
sin

(
θ

2

)
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Using the formula for the differential cross section (see lecture notes) we get

σ(θ) =
s

sin(θ)

∣∣∣∣dsdθ
∣∣∣∣ = a2

2

cos(θ/2) sin(θ/2)

sin(θ)
=

a2

4
.

b) The total cross section is therefore

σ = 2π

∫ π

0
σ(θ) sin(θ)dθ = πa2.

This is physically sensible, since it is the actual cross-sectional area of the sphere.

Question 3

Figure 2: Gracing an attractive hard sphere.

The impact parameter smax will send the particle just gracing the surface at r = a. Due to conservation of
energy, we have

E =
1

2
mv20 =

1

2
mv2 − k

a
.

Furthermore, conservation of angular momentum means that ℓ infinitely far away is the same as when the
particle touches the surface, so

ℓ = mv0smax = mva.

Combining these two equations, we have

smax =
v

v0
a = a

√
1 +

2k

mav20
.

All particles with impact parameter s < smax will hit the surface, so that σeff = πs2max.

Question 4

a) From the lecture notes we have

p =
ℓ2

mk
ε2 = 1 +

2Eℓ2

mk2
.

Eliminating ℓ gives us

E = − k

2p

(
1− ε2

)
.

The total energy is constant. This means that the average total energy is also constant:

⟨T ⟩+ ⟨V ⟩ = ⟨E⟩ = E.
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The virial theorem for a gravitational potential gives

⟨T ⟩ = −1

2
⟨V ⟩.

Combining this gives

⟨T ⟩ =
k

2p

(
1− ε2

)
⟨V ⟩ = −k

p

(
1− ε2

)
b) The solution to the Kepler problem in polar coordinates (see lecture notes) is

r =
p

1 + ε cos(θ)
.

The average potential energy over one period is

⟨V ⟩ = 1

tp

∫ tp

0
dt V = − 1

tp

∫ tp

0
dt

k

r
.

Combining these equations gives

⟨V ⟩ = − 1

tp

∫ tp

0
dt

k

p
(1 + ε cos(θ)) = − k

ptp

(∫ tp

0
dt+ ε

∫ tp

0
dt cos(θ)

)
=

k

p
(1 + ε⟨cos(θ)⟩) .

We can find the last integral by using ℓ = mr2θ̇ and a change of variable

⟨cos(θ)⟩ =
1

tp

∫ tp

0
dt cos(θ) =

1

tp

∫ 2π

0
dθ

1

θ̇
cos(θ) =

m

ℓtp

∫ 2π

0
dθ r(θ)2 cos(θ)

=
mp2

ℓtp

∫ 2π

0
dθ

cos(θ)

(1 + ε cos(θ))2
.

Using hint 2 and 3 we get

⟨cos(θ)⟩ =
mp2

ℓtp

∫ 2π

0
dθ

cos(θ)

(1 + ε cos(θ))2
= −mp2

ℓtp

d

dε

∫ 2π

0

dθ

1 + ε cos(θ)

= −mp2

ℓtp

d

dε

2π√
1− ε2

= −2πm

ℓtp

p2ε

(1− ε2)3/2
.

Then, using

tp =
2πm

ℓ2
p2

(1− ε2)3/2
,

we get
⟨cos(θ)⟩ = −ε,

so

⟨V ⟩ = k

p
(1− ε2).

c) Integrating the kinetic energy by parts, with ṙ2 = u′v, gives

⟨T ⟩ = m

2tp

∫ tp

0
dt

(
dr

dt

)2

=
m

2tp

(
r · dr

dt

∣∣∣∣tp
0
−
∫ tp

0
dt r · d

2r

dt2

)
Here, the first term in the parenthesis is zero, since r(0) = r(tp), and ṙ(0) = ṙ(tp). Hence,

⟨T ⟩ = − 1

2tp

∫ tp

0
dt r ·

(
− k

r3
r

)
=

1

2tp

∫ tp

0
dt

k

r
= −1

2
⟨V ⟩ = k

2p
(1− ε2).

This agrees with the result from the virial theorem.
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