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SOLUTION ASSIGNMENT 7

Question 1

L = T − V =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
− V (r, θ, z)

Lagrange’s equations:
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , L = L(q, q̇)

which yields

mr̈ −mrθ̇2 = −∂V

∂r
d

dt

(
mr2θ̇

)
+

∂V

∂θ
= 0

mz̈ +
∂V

∂z
= 0

Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, H = H(p, q)

The Hamiltonian is

H = T + V =
1

2m

(
p2r +

p2θ
r2

+ p2z

)
+ V (r, θ, z)

Here, we have used pi = ∂L/∂q̇i, which gives

pr = mṙ , pθ = mr2θ̇ , pz = mż

and next eliminated q̇i from the expression for T . Hamilton’s equations are

ṗr =
p2θ
mr3

− ∂V

∂r
, ṗθ = −∂V

∂θ
, ṗz = −∂V

∂z

The three equations for q̇i are already in place, via the expressions for pi.

Question 2

a) We will show that x(t) and y(t) obey the equations

ẍ− 2Ωẏ + ω2
0x = 0 (1)

ÿ + 2Ωẋ+ ω2
0y = 0 (2)

where Ω = ω sin θ and ω2
0 = g/l. The forces acting on the sphere, measured in the Realfagbygg coordinate

system, are:

� gravity mg = −mgẑ

� the wire S = Sxx̂+ Syŷ + Sz ẑ
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� the Coriolis force F cor = −2mω × v

We neglect the centrifugal force −mω × (ω × r).
The angular velocity of earth is

ω = ω sin θ ẑ + ω cos θ ŷ

The velocity of the sphere is
v = ẋx̂+ ẏŷ + żẑ

We assume small oscillations, hence we may write

S = |S| ≃ mg

and further assume that
ż ≪ ẋ, ẏ

The cross product in the Coriolis term is then approximately

ω × v ≃ (ω sin θ ẑ + ω cos θ ŷ)× (ẋx̂+ ẏŷ)

= ẋω sin θŷ − ẏω sin θx̂− ẋω cos θẑ

= Ω(ẋŷ − ẏx̂)− ẋω cos θẑ

Consider the components of the wire force. When the distance from the origin is

r = xx̂+ yŷ,

we have (with an angle β between the z axis and the wire)

|Sx| = S sinβ sinϕ = S
r

l

x

r
≃ mg

x

l

|Sy| = S sinβ cosϕ = S
r

l

y

r
≃ mg

y

l

|Sz| = S cosβ = S
l − z

l
≃ mg

l − z

l

The horizontal component of S is all the time directed towards the origin, so we have Sx > 0 when x < 0,
the same for Sy, and opposite when x > 0, or y > 0. Hence,

Sx = −mgx/l = −mω2
0x

Sy = −mgy/l = −mω2
0y

Sz = mg(1− z/l)

The equations of motion for the sphere are

ma = F = mg + S + F cor

For the x component:
mẍ = −mω2

0x+ 2mΩẏ

For the y component:
mÿ = −mω2

0y − 2mΩẋ

Which is what we were supposed to derive, for the movement in the xy plane.

b) With u = x+ iy:

u̇ = ẋ+ iẏ

ü = ẍ+ iÿ
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Multiply equation (2) with i and add this to equation (1). This gives

ẍ+ iÿ + 2iΩ(ẋ+ iẏ) + ω2
0(x+ iy) = 0

i.e.
ü+ 2iΩu̇+ ω2

0u = 0

c) We try u ∼ exp(αt) as solution. This yields

α2 + 2iΩα+ ω2
0 = 0

with solutions

α = −iΩ± i
√
ω2
0 +Ω2

≃ −iΩ± iω0

since ω0 ≫ Ω. The general solution for u is therefore

u(t) = eiΩt
(
Aeiω0t +Be−iω0t

)
= Ce−iΩt cos (ω0t+ γ)

The complex conjugate of u is then

u∗(t) = C∗eiΩt cos (ω0t+ γ)

Since u = x+ iy, and therefore u∗ = x− iy, we find

x =
1

2
(u+ u∗) = cos (ω0t+ γ) · ℜ

{
Ce−iΩt

}
y =

1

2i
(u− u∗) = cos (ω0t+ γ) · ℑ

{
Ce−iΩt

}
With the given initial conditions x = y = 0 at t = 0:

0 = cos γ · ℜC
0 = cos γ · ℑC

Since we cannot have C = 0 (in that case u = 0), we must have cos γ = 0, i.e., γ = π/2, and therefore
cos (ω0t+ γ) = sinω0t. Next, we calculate ẋ and ẏ:

ẋ = ω0 cosω0tℜ
{
Ce−iΩt

}
+ sinω0tℜ

{
−iΩCe−iΩt

}
ẏ = ω0 cosω0tℑ

{
Ce−iΩt

}
+ sinω0tℑ

{
−iΩCe−iΩt

}
Insert ẋ = v0 and ẏ = 0 at t = 0:

v0 = ω0ℜC
0 = ω0ℑC

which gives

ℑC = 0

ℜC =
v0
ω0
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The complete solution is

x(t) = sinω0t · ℜ
{
v0
ω0

e−iΩt
}
=

v0
ω0

cosΩt sinω0t

y(t) = sinω0t · ℑ
{
v0
ω0

e−iΩt
}
= − v0

ω0
sinΩt sinω0t

which corresponds to a harmonic oscillations in the xy plane, with angular frequency ω0, where the plane
of oscillation rotates clockwise, with period

T =
2π

Ω
=

2π

ω sin θ
≃ 26.8 h
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