TFY4345 Classical Mechanics. Department of Physics, NTNU.

ASSIGNMENT 11

Question 1

For the reaction $p + n \rightarrow p + n + p + \overline{p}$, find the threshold kinetic energy $T_p = T_n$ when the proton and the neutron collide head-on with equal speed.

See lecture notes for the case with the neutron initially at rest.

Question 2

Assume the inertial system S' moves with velocity v relative to S, along the x_3 axis. Use the field tensor $F_{\mu\nu}$ and the Lorentz transformation $L_{\mu\nu}$ and derive the transformation rules for E_2 , E_3 , B_2 and B_3 . See lecture notes for E_1 and B_1 .

Question 3

A π meson of mass m_{π} at rest disintegrates into a μ meson of mass m_{μ} and a neutrino of negligible mass. Show that the kinetic energy of the μ meson is

$$T = \frac{(m_{\pi} - m_{\mu})^2}{2m_{\pi}} c^2.$$

Question 4

a) The constraint $y = x \tan \theta$ for a particle sliding down an incline is called

A) conservative

B) holonomic

- C) canonical
- D) invariant
- E) cyclic
- F) virtual

b) What is the value of the element ε_{333} of the Levi-Civita tensor?

A) 1

B) -1

C) i

D) -i

E) 0

F) π

c) What is the SI unit of the action $I = \int L dt$? Here, L is the system Lagrangian and t is time.

- A) The same unit as for angular momentum
- B) The same unit as for power
- C) The same unit as for acceleration
- D) Nm
- E) m/s^2
- F) Dimensionless

d) If the system Lagrangian is independent of a coordinate q, this coordinate is called

- A) conservative
- B) holonomic
- C) canonical
- D) invariant
- E) cyclic
- F) virtual

e) A particle with mass m moves in the xy plane in a potential $V(r) = \alpha x^2 y^2$, with α a positive constant (and with a suitable unit). What is the acceleration of the particle on the y axis?

A) 0 B) $\alpha y^{3/2}/m$ C) $\alpha y^{2/3}/m$ D) $2\alpha y^{3/2}/m$ E) $2\alpha y^{2/3}/m$ F) $4\alpha y^3/m$