ASSIGNMENT 5

Question 1

a) Write a program that produces the curve

$$r = \frac{p}{1 + \varepsilon \cos(\gamma \theta)}$$

Choose (e.g.) p = 1, and a rather small value of γ , and let the angle θ vary from 0 to $\pi/2\gamma$ when you plot the curve $(x, y) = (r \cos \theta, r \sin \theta)$.

b) A particle with mass m and negative energy E moves in the potential

$$V(r) = -\frac{k}{r} + \frac{\beta}{2r^2}.$$

Here, k and β are positive constants. Show that the orbit can be written in the form

$$r = \frac{p}{1 + \varepsilon \cos(\gamma \theta)},$$

i.e., a precessing elliptic orbit (cf curve in a)). Find expressions for p, ε and γ . Show that the semimajor axis is a = k/|E|, the same as when $\gamma = 1$.

(This is a *model* potential that reproduces, qualitatively, the precession of planetary orbits, due to GR (general relativity). The correction in GR is actually proportional to $-1/r^3$.)

Question 2

A spherical pendulum with a massless rod of length d and mass m moves in the gravitational field $g = -g\hat{z}$. See figure on page 2. Use the regular azimuth angle ϕ and the polar angle θ between the rod and the *negative* z axis in this problem. Let V = 0 for $\theta = \pi/2$.

Show that the Lagrange equations give

$$p_{\phi} \equiv m d^2 \sin^2 \theta \, \dot{\phi} = \text{constant}$$

and

$$\ddot{\theta} - \frac{1}{2}\sin 2\theta \,\dot{\phi}^2 + \frac{g}{d}\sin\theta = 0.$$

Next, show that the total energy E can be written as

$$E = \frac{1}{2}md^2\dot{\theta}^2 + V_{\text{eff}}(\theta).$$

Finally, show that the time t and the angle ϕ can be written in integral form as

$$t = \sqrt{\frac{md^2}{2}} \int \frac{d\theta}{\sqrt{E - V_{\rm eff}(\theta)}}$$

and

$$\phi = \frac{p_{\phi}}{2md^2} \int \frac{d\theta}{\sin^2\theta\sqrt{E - V_{\text{eff}}(\theta)}}.$$

If $p_{\phi} = 0$, what type of motion is executed by the pendulum?

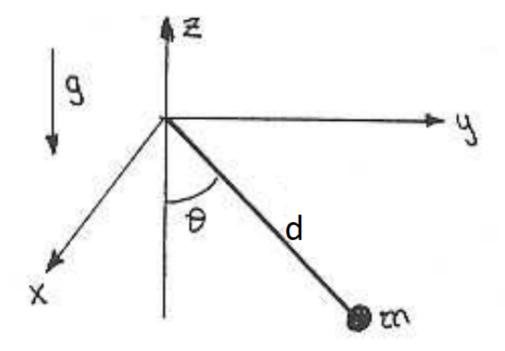


Figure 1: Spherical pendulum.