### TFY4345 Classical Mechanics. Department of Physics, NTNU.

### **ASSIGNMENT 9**

### Question 1



Figure 1: Four point masses in a plane.

For the four point masses in the figure above (all located in the xy plane), find the inertia tensor  $I_{jk}$ a) in the coordinate system xyzb) in the coordinate system xyz

b) in the coordinate system x'y'z'

# Question 2



Figure 2: Two coupled oscillating masses.

Find the two normal modes (frequencies and relative amplitudes) for the horizontally oscillating masses in the figure above. (Neglect friction.) Let  $\eta_1$  and  $\eta_2$  denote the displacement from equilibrium for the left and right mass, respectively.

# Question 3

In the lectures, we found the eigenfrequencies  $\omega_{\alpha}$  ( $\alpha = 1, 2, 3$ ) for small oscillations along the molecular axis in a symmetric 3-atomic molecule (masses m, M and m and spring constants k between nearest neighbours). Derive the corresponding amplitude vectors  $A_{\alpha}$ , where the components  $A_{j\alpha}$  (j = 1, 2, 3) represent the oscillation amplitude (including sign) for atom j in normal mode  $\alpha$ .

# Question 4

Two inertial systems S and S' have a common origin at time t = t' = 0. The system S' moves with velocity  $v = v\hat{z}$  relative to S.

a) Use the Lorentz transformation (LT) to show that the equation for the light front for a light wave starting in r = r' = 0 at t = t' = 0 is described by the same equation in S and S'.

b) If S' has velocity  $\boldsymbol{v} = c\boldsymbol{\beta}$  relative to S, show that the LT can be written as

$$\begin{aligned} \mathbf{r}' &= \mathbf{r} + (\gamma - 1) \frac{(\boldsymbol{\beta} \cdot \mathbf{r})\boldsymbol{\beta}}{\beta^2} - \gamma c t \boldsymbol{\beta} \\ t' &= \gamma t - \frac{\gamma}{c} \boldsymbol{\beta} \cdot \mathbf{r} \end{aligned}$$