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Problem 1. (Points: 10+10+10+10+10= 50)

The discrete Master equation governing a stochastic process for a discrete random variable n is
given by

dPn(t)

dt
=

∑
n′

[ωn,n′ Pn′(t)− ωn′,nPn(t)] .

a) Explain what the various terms in the equation mean, and under what conditions the equation is
derived.

b) Consider a stochastic process where ωn,n′ is given by

ωn,n′ = λ(n′)δn′,n+1(1− 2δn,n′−2) + κ(n′)δn′,n−1(1 + 2δn,n′+2),

where δi,j is the Kronecker symbol, n ∈ Z (the set of all integers), and Pn(0) = δn,0. Perform the
summation over n′ in the Master-equation and give the resulting equation for Pn(t).

c) Consider now the case where λ(n) = ρ and κ(n) = η, where ρ, η are independent of n. In-
troduce the generating functional F (z, t) ≡

∑
n z

nPn(t) and show that the equation for F (z, t) is
given by

z
∂F

∂t
= [ρ(1− z) + η(z − 1)z]F (z, t).

What is the initial condition on F (z, t)?

d) Solve the equation for F (z, t) and show that it is given by

F (z, t) = e−(ρ+η)t H(ρt/z) H(ηzt),

thus determining the function H(x).

e) Use the definition of F (z, t) to derive general relations between ⟨n⟩ and ⟨n2⟩ and F (z, t). Use the
result for F (z, t) in d) to compute ⟨n⟩ and ⟨(n − ⟨n⟩)2⟩ explicitly. What sort of discrete stochastic
process does ωn,n′ describe?
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Problem 2. (Points: 10+10+10+10+10+10=60)
The Boltzmann-equation for the one-particle distribution function f(r,v, t) is given by

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
=

∫
d3v1

∫
dΩ σ(Ω) |v1 − v| [f ′f ′

1 − ff1]

The collision term on the right hand side of the equation describes a collision (v,v1) → (v′,v′
1),

with f = f(r,v, t), f1 = f(r,v1, t), and correspondingly for (f ′, f ′
1). Finally, σ(Ω) is the differential

scattering cross section for the collision.

a) A velocity-average of a quantity A(v) may be obtained from f as

⟨A⟩ ≡ 1

n

∫
d3vAf

where n =
∫
d3vf , where n is a number density. Show that we have the following macroscopic

equation for any A(v)

∂ (n⟨A⟩)
∂t

+
∂ (n⟨Avj⟩)

∂xj

− ajn⟨
A

∂vj
⟩ =

∫
d3v

∫
d3v1

∫
dΩ σ(Ω) |v1 − v| [f ′f ′

1 − ff1]A(v)

b) Define what is meant by a collision invariant, and show that the right hand side of the above
equation vanishes whenever A is a collision invariant.

c) Now let A = p, where p is the momentum of the particle described by f . Let ρ = nm be
the mass-density of the system. Set up the macroscopic equation for p and give the physical inter-
pretation of it.

d) The hydrodynamic conservation laws for mass and momentum are given by, on their most general
form

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu) = F−∇ · P

where P is the pressure-tensor of the system, F is an external force acting on a little fluid element of
density ρ, and u = ⟨v⟩. Express P in terms of an appropriate velocity-average, as defined above, by
comparing the above equations with the result you found in d).
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e) Consider the system close to equilibrium, so that we may use the following Ansatz for f

f(r,v, t) = n

(
m

2πkBT

)3/2

exp

(
− m

2kBT
(v − u)2

)
where kB is Boltzmann’s constant and T is temperature, and (n, T,u) could depend on (r, t). In
general, the pressure tensor Pij of a fluid may be written on the form (need not be shown!)

Pij = p δij − η

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇ · u

)
− ζδij∇ · u

Here, p is hydrostatic pressure, while (η, ζ) are properties (viscosities) of the fluid that describe in-
ternal friction under shearing and compression. Calculate P using f(r,v, t) as given above, and from
this find expressions for the hydrostatic pressure p, the shear viscosity η, and bulk-viscosity ζ of the
system, by comparing the result of your calculation to the form given above.

f) Consider how the general expression for Pij transforms under time-reversal. How could you
have arrived at the results you found for (η, ζ) in e) based on such time-reversal considerations?
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Formulae that may be useful (it is presumed that the candidates will be able to interpret the symbols
entering the formulae):

The equilibrium Fermi distribution function:

f0(x) =
1

eβx + 1

Poisson distribution

Pn(λ) =
λn

n!
e−λ

Binomial expansion

(x+ y)N =
N∑

n=0

(
N

n

)
xn yN−n =

N∑
n=0

N !

n!(N − n)!
xn yN−n

Master-equation for a continuous stochastic variable y:

∂P (y, t)

∂t
=

∫
dη [ω(y − η; η)P (y − η, t)− ω(y; η)P (y, t)]

Taylor expansion of the exponential function:

ex =
∞∑
k=0

xk

k!

Modified Bessel-function of the first kind of order n:

In(x) =
∞∑
k=0

(
x
2

)n+2k

k!(k + n)!

Gaussian integrals ∫
d3v vi vj e

−αv2 =
1

3
δij

∫
d3v v2 e−αv2∫ ∞

0

dv v2 e−αv2 =
1

4

√
π

α

1

α∫ ∞

0

dv v4 e−αv2 =
3

8

√
π

α

1

α2

Three dimensional volume element in spherical coordinates

d3v = dϕ sin θdθ v2dv


