

NTNU, DEPARTMENT OF PHYSICS

Exam TFY4345 Classical Mechanics Fall 2024

Lecturer: Professor Jens O. Andersen Department of Physics, NTNU

Saturday November 30 2024 09:00–13:00

Problem 1

Fig. 1 shows a bead of mass m on rotating circular wire with constant angular speed ω . The radius of the wire is R. The gravitational acceleration g is directed downwards. We will be using spherical coordinates (r, ϕ, θ) .

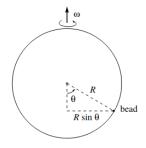


Figure 1: Rotating hoop with a bead of mass m.

a) There are two constraints in this problem

$$r = R, \qquad (1)$$

$$\dot{\phi} = \omega . \tag{2}$$

Explain why the second constraint $\dot{\phi} = \omega$ is semi-holonomic. Explain why this constraint is equivalent to the following holonomic constraint

$$\phi = \omega t . \tag{3}$$

b) Using the method of Lagrange multipliers to enforce the constraints, show that the Lagrangian of the system can be written as

$$L = \frac{1}{2}m\left[\dot{r}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2} + r^{2}\dot{\theta}^{2}\right] + mgr\cos\theta - \lambda_{1}(r-R) - \lambda_{2}(\phi - \omega t) .$$
(4)

What is the interpretation of λ_1 and λ_2 ?

c) Calculate the Euler-Lagrange equations. Find explicit expressions for λ_1 and λ_2 .

d) Calculate

$$\frac{dH}{dt} , (5)$$

where H is the Hamiltonian of the system. Interpret the result.

e) Instead of using the method of Lagrange multipliers, we can enforce the constraint by using a single generalized coordinate, namely θ . Show that the Lagrangian can be written as

$$L = \frac{1}{2}mR^2 \left[\sin^2\theta\omega^2 + \dot{\theta}^2\right] + mR^2\omega_0^2\cos\theta , \qquad (6)$$

where we have introduced the natural angular speed $\omega_0 = \sqrt{\frac{g}{R}}$.

f Write down the equation of motion for θ .

g) Rewrite the equation of motion as a set of two coupled differential equations for θ and $p = \dot{\theta}$.

h) Determine the fixed points (θ^*, p^*) as functions of the angular speed ω . Calculate the eigenvalues of the Jacobian matrix J for each fixed point and classify the fixed point. Hint: Fig. 2 in the Appendix. Sketch the fixed points θ^* as functions of the dimensionless variable ω/ω_0 . Any comments?

Problem 2

The Lagrangian for a particle with rest mass m moving in one dimension is

$$L = -mc\sqrt{-\eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} + amB_{\mu\nu}\dot{x}^{\mu}x^{\nu} , \qquad (7)$$

where $\mu = 0, 1$ and $\nu = 0, 1, B_{\mu\nu}$ is a covariant tensor of rank two, and *a* is a constant. The initial conditions are $x(\tau = 0) = u(\tau = 0) = 0$. We also set $t(\tau = 0) = 0$ for simplicity.

- a) Is the Lagrangian L Lorentz invariant?
- **b)** In the laboratory frame, the tensor $B_{\mu\nu}$ is the 2 × 2 matrix

$$B_{\mu\nu} = \frac{1}{c} \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} . \tag{8}$$

Write down the Lagrangian L in the laboratory frame.

c) Derive the equations of motion. Solve the equations of motion for $x(\tau)$ and $t(\tau)$. Any comments? Hint: use

$$\frac{\partial \left[-mc\sqrt{-\eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}\right]}{\partial \dot{x}^{\alpha}} = m\dot{x}_{\alpha} . \tag{9}$$

d) Find the conserved quantity and interpret the result.

Problem 3

- a) Formulate Kepler's three laws of planetary motion.
- b) What does it mean that two planets are tidally locked to each other?

c) Define tidal force. It takes the Earth 24h50min to complete a rotation around its own axis. How often do high tide and low tide occur? Disregard the Sun and other planets in the Solar System.

Appendix

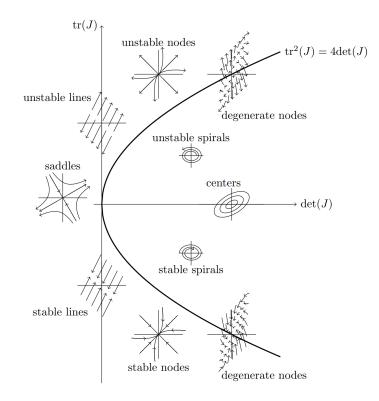


Figure 2: Classification of fixed points.