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Problem 1

a) The second constraint is of the form

f(ϕ̇) = ϕ̇ = ω , (1)

which involves the time derivative of the generalized coordinate ϕ. It is therefore semiholo-
nomic. Integrating this equation yields

ϕ = ωt , (2)

where we for convenience have chosen C = 0, where C is an integration constant. The
constraint is now of the form

f(ϕ) = ϕ = ωt , (3)

which is holonomic since it only involves the coordinate itself. It is also time dependent.
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b) The kinetic energy of the particle in spherical coordinates is

T =
1

2
m(ṙ2 + r2 sin2 θϕ̇2 + r2θ̇2) . (4)

The potential energy is given by

V = −mgz = −mgr cos θ . (5)

The constraints are enforced by introducing the Lagrange multipliers λ1 and λ2 giving the
terms λ1(r −R) and λ2(ϕ− ωt). Adding T , V , and the constraint term, yields

L =
1

2
m
[
ṙ2 + r2 sin2 θϕ̇2 + r2θ̇2

]
+mgr cos θ − λ1(r −R)− λ2(ϕ− ωt) . (6)

The Lagrange multipliers λ1 and λ2 are generalized forces that enforce the constraints. The
dimension of λ1 is N and so can be interpreted as the force that ensures that distance from
the bead to the origin is R. The dimension of λ2 is nm, which is the dimension of torque.
It is the torque required for circular motion in the x–y plane with constant speed.

c) The Euler-Lagrange equations for λ1 and λ2 are

d

dt

∂L

∂λ̇1

− ∂L

∂λ1
= r −R = 0 , (7)

d

dt

∂L

∂λ̇2

− ∂L

∂λ2
= ϕ− ωt = 0 , (8)

or r = R and ϕ = ωt, as required. Moreover

∂L

∂r
= mr

[
sin2 θϕ̇2 + θ̇2

]
+mg cos θ − λ1 = mR

[
sin2 θω2 + θ̇2

]
+mg cos θ − λ1 ,(9)

∂L

∂ϕ
= −λ2 , (10)

∂L

∂θ
= mr2 sin θ cos θϕ̇2 −mgr sin θ , (11)

d

dt

∂L

∂ṙ
= mr̈ = 0 , (12)

d

dt

∂L

∂ϕ̇
= 2mr2ϕ̇ sin θ cos θθ̇ + 2rṙ sin2 θϕ̇+mr2 sin2 θϕ̈ , (13)

d

dt

∂L

∂θ̇
= mr2θ̈ + 2mrṙθ̇ = mR2θ̈ . (14)

This yields

mr̈ = mr
[
sin2 θϕ̇2 + θ̇2

]
−mg cos θ − λ1 ,(15)

2mr2ϕ̇ sin θ cos θθ̇ + 2rṙ sin2 θϕ̇+mr2 sin2 θϕ̈ = −λ2 , (16)

mr2θ̈ + 2mrṙθ̇ = mr2 sin θ cos θϕ̇2 −mgr sin θ . (17)
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Using r = R, dṙ = r̈ = 0, and ϕ̇ = ω, we obtain

λ1 = mr
[
sin2 θω2 + θ̇2

]
−mg cos θ , (18)

λ2 = −2mR2ω sin θ cos θθ̇ , (19)

θ̈ = sin θ cos θω2 − g

R
sin θ . (20)

d)

dH

dt
= −∂L

∂t
= −λ2ω . (21)

The term λ2dϕ = λ2ωdt is the work done by the constraint force when the bead moves a
distance R sin θdϕ. The work per unit time is then equal to dH

dt .

e) This follows directly from the original Lagrangian by setting λ1 = λ2 = ṙ = 0, r = R,

θ̇ = ω, and ω0 =
√

g
R .

f) This follows directly from Eqs. (11) and (14)

θ̈ = ω2 sin θ cos θ − ω2
0 sin θ . (22)

g) The first equation is simply θ̇ = p which is yields θ̈ = ṗ and therefore

θ̇ = p = f(θ, p) , (23)

ṗ = ω2 sin θ cos θ − ω2
0 sin θ = g(θ, p) . (24)

h) The fixed points are found by solving the equations f(θ, p) = g(θ, p) = 0. The first

equation yields p = 0, while the second yields θ∗ = 0 or θ∗ = ± arccos
ω2
0

ω2 .
1 The latter

exists only if ω > ω0, i.e. if the wire rotates sufficiently fast. Thus the fixed points are

(0, 0), (± arccos
ω2
0

ω2 , 0) The Jacobian matrix is

J =

(
0 1

ω2(cos2 θ − sin2 θ)− ω2
0 cos θ 0

)
. (25)

We first consider (0, 0). This yields

J(0, 0) =

(
0 1

ω2 − ω2
0 0

)
, (26)

1There is also an unstable fixed point at (π, 0). Moreover, I have not discussed the borderline cases where
ω = ω0.
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whose eigenvalues are λa,b = ±
√
ω2 − ω2

0. For ω < ω0, the eigenvalues are purely imaginary
and the fixed point is a center. For ω > ω0, the eigenvalues are purely real and with
opposite sign. Thus the fixed point is a saddle. We next consider the fixed points, whose
Jacobian is

J(± arccos
ω2
0

ω2
, 0) =

(
0 1

2ω2
(
ω4
0

ω4 − 1
)

0

)
, (27)

with eigenvalues λa,b =
√
2ω

√
ω4
0

ω4 − 1. Since ω0 < ω, the eigenvalues are purely imaginary
and are centers.

The fixed point (0, 0) exists for all values of ω > 0, but changes from a center to a saddle
at ω = ω0, exactly at the point where two new fixed points emerge. This is shown in Fig. 1
and is called a pitchfork bifurcation.
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Figure 1: Fixed points θ∗ as functions of ω/ω0.

Problem 2

a) The first term is the square root of the contraction of a covariant and a contravariant
vector, i.e a Lorentz scalar. The second term is the contraction of a contravariant tensor of
rank two Bµν and a covariant vector ẋµxµ and is therefore a Lorentz scalar. The Lagrangian
is therefore invariant under Lorentz transformations and a Lorentz scalar.

b) The only nonzero term is B01 giving am
c ẋ0x1 for the second term and therefore

L = −mc
√

−ηµν ẋµẋν + amṫx . (28)
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c) The partial derivatives are

∂L

∂ṫ
= −mc2ṫ+ amx , (29)

∂L

∂ẋ
= mẋ , (30)

∂L

∂t
= 0 , (31)

∂L

∂x
= amṫ . (32)

This yields the equations of motion

d

dτ
(mc2ṫ− amx) = 0 , (33)

ẍ = aṫ . (34)

Upon integration, the first equation yields c2ṫ−ax = C, where C is an integration constant.
Since u(0) = 0, we have ṫ(0) = 1. Since x(0) = 0, we find C = c2. Substituting this result
into the second equation gives

ẍ− a2

c2
x = a . (35)

This is a second-order linear inhomogenous differential equation whose solution is the general
solution to the homogeneous equation and the particular solution to the inhomogeneous,

x(τ) = A cosh
a

c
τ +B sinh

a

c
τ − c2

a
. (36)

The initial conditions give A− c2

a = 0 and B = 0, and so

x(τ) =
c2

a

[
cosh

a

c
τ − 1

]
. (37)

The first equation now reads

ṫ =
a

c2
x+ 1 . (38)

Integration gives

t(τ) =
c

a
sinh

a

c
τ , (39)

where have used the initial condition t(τ) = 0 to determine the integration constant. We
recognize x(τ) and t(τ) as solutions to the problem of constant acceleration g = a in the
instantaneous rest frame or hyperbolic motion.
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d) We have already shown that mc2ṫ − amx is a constant of motion. This is the conse-
quence of ct being a cyclic coordinate. This constant was also shown to take the value mc2,
which is the rest mass energy.

Problem 3

a) Kepler’s laws of planetary motion are

(a) Planetary motion is elliptical with the Sun in one of the foci

(b) A line joining the Sun and a planet sweeps out equal areas in equal times.

dA

dt
=

1

2

L

m
. (40)

(c) The square of the period T is proportional to the cube of the semi-major axis a

T 2 ∝ a3 . (41)

b) It means that it takes each planet as long to rotate around its own axis as it does to
revolve around its partner.

c) Tidal force refers to the variation in the gravitational field over a body generated by
another body. The Moon’s gravitational pull generates the tidal force. The tidal force
causes Earth—and its water—to bulge out on the side closest to the Moon and the side
farthest from the Moon. Thus high tide will be every 12h25min.

6


