1.1 Units.

a.) The four fundamental constants \hbar (Planck's constant), c (velocity of light), G_N (gravitational constant) and k_B (Boltzmann constant) can be combined to obtain the dimension of a length, time, mass, energy and temperature. Find the four relations and calculate the numerical values of two of them.

b.) Find the connection between a cross section σ expressed in units of cm², mbarn, and ${\rm GeV^{-2}}.$

a.) A formal way to derive e.g. the Planck time $t_{\rm Pl}$ is to solve

$$[c]^{\alpha}[\hbar]^{\beta}[G]^{\gamma}[k_{B}]^{\delta} = [cm/s]^{\alpha}[g\,cm^{2}/s]^{\beta}[cm^{3}/(g\,s^{2})]^{\gamma}[g\,cm^{2}/K]^{\delta} = s.$$

Simpler: i) note that k_B contains as only one the temperature T and enters therefore only T_{Pl} ii) we need a combination of $\hbar G$ to cancel the gram.

iii) multiply with $1/c^5$ to eliminate the centimeter,

$$[\hbar G/c^5] = \mathrm{s}^2$$

and thus

$$t_{\rm Pl} = \sqrt{\frac{\hbar G}{c^5}} \approx 5.4 \times 10^{-44} \mathrm{s} \,.$$

Then $l_{\rm Pl} = ct_{\rm Pl} = 1.6 \times 10^{-33} \,\mathrm{cm}$, etc.

The Planck units combine special relativity (they contain c), quantum effects (they contain \hbar) and gravity (they contain G). This indicates that at energies $E \gg M_{\rm Pl}c^2$, lengths $l \ll l_{\rm Pl}, \ldots$, a quantum theory of gravity is required.