1.11 Relativity of simultaneity.

Draw a space-time diagram (in d = 2) for two inertial frames connected by a boost with velocity β : What are the angles between the axes t and t', x and x'? Draw lines of constant t and t' and convince yourself that the time order of two space-like events is not invariant.

We parametrize a boost along the x direction by

$$\tilde{t} = t \cosh \eta + x \sinh \eta \,, \tag{18}$$

$$\tilde{x} = t \sinh \eta + x \cosh \eta \,, \tag{19}$$

with $\tilde{y} = y$ and $\tilde{z} = z$. Direct calculation using $\cosh^2(x) - \sinh^2(x) = 1$ shows that Δs^2 is invariant as desired.

Consider now in the system K the origin of the system K. Then x = 0 and

$$\tilde{x} = t \sinh \eta \quad \text{and} \quad \tilde{t} = t \cosh \eta \,.$$
(20)

Dividing the two equations gives $\tilde{x}/\tilde{t} = \tanh \eta$. Since $\beta = \tilde{x}/\tilde{t}$ is the relative velocity of the two systems, we have identified the physical meaning of the imaginary "rotation angle η " as the rapidity

$$\eta = \operatorname{arctanh}\left(\beta\right). \tag{21}$$

We obtain the lines of constant \tilde{t}_0 (i.e. the \tilde{x} axis and its parallels) in the x - t plane by solving (18) for t,

$$t = -\beta x + \tilde{t}_0 \tag{22}$$

Now we recall that a straight-line with y = mx has the angle $\tan \alpha = m$ to the x axis. Thus the rotation angle in our case is given by η : Since $\beta \in [-1 : 1]$, \tilde{x} axis has the angle between 0 and 45° with the x axis.

In the same way, the \tilde{t} axis follows from (19) as

$$t = -\beta^{-1}x + \tilde{x}_0. \tag{23}$$

Now $1/\beta$ is in the range $[-\infty:1]$ and $[1:\infty]$; the \tilde{t} axis has thus the angle between 0 and 45° to the t axis.

In the frame (t', x') moving with $\beta = \tanh(\eta)$ relative to the frame (t, x), the axes are rotated by η . Space-time events like *B* that are inbetween t = const and t' = const have a different time order relative to *A*: $t'_B > t'_A$ and $t_A > t_B$. Since $|\eta| < 45^\circ$, time-like events are time-ordered.

Note that the t', x' axes are orthogonal to each other (in space-time), although they are not plotted in the Euclidean geometry of \mathbb{R}^2 .

© M. Kachelrieß