
Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

1.12 Wave equation for a string.

Consider a string of length L, mass density ρ and tension κ in one spatial dimension.
Denoting its deviation from its equilibrium position x0 with φ(x, t) ≡ x(t) − x0, write
down its kinetic and potential energy (density) and the corresponding action (for small
oscillations). Derive its equation of motion. [Note: φ(x, t) depends on t and x, and the
Lagrange equation for L(φ, ∂tφ, ∂xφ) will contain d/dt and d/dx terms.]

The kinetic and potential energy density of the string are
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[In general, V contains also higher derivatives which can become important for large oscillations.]
The corresponding Lagrange function L = T − V , Lagrange density L , and action are
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The Lagrange equations are

0 =
∂L

∂φ
− ∂t

∂L

∂(∂tφ)
− ∂x

∂L

∂(∂xφ)

or

0 = 0− ρ
∂2φ

∂t2
+ κ

∂2φ

∂x2
.

This a wave equation, (1/v2)∂
2φ
∂t2

= ∂2φ
∂x2 with wave speed c =

√

κ/ρ.
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