Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

1.12 Wave equation for a string.

Consider a string of length L, mass density p and tension x in one spatial dimension.
Denoting its deviation from its equilibrium position xy with ¢(z,t) = x(t) — o, write
down its kinetic and potential energy (density) and the corresponding action (for small
oscillations). Derive its equation of motion. [Note: ¢(z,t) depends on ¢ and z, and the
Lagrange equation for L(¢, 0,0, 0,¢) will contain d/d¢ and d/dz terms.]

The kinetic and potential energy density of the string are
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[In general, V' contains also higher derivatives which can become important for large oscillations.|
The corresponding Lagrange function L =T — V| Lagrange density ., and action are
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The Lagrange equations are
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This a wave equation, (1/v? )a—¢ a—d’ with wave speed ¢ = y/Kk/p.

(© M. Kachelrief3



