Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

1.3 Higher derivatives.

a.) Varying the action for L = L(q, ¢, q,...) gives
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In general, a term with a n.th time derivative of ¢ has to be n times partially integrated, giving
the term
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in the Euler-Lagrange equation.

b.) The Euler-Lagrange equation for L = L(q, ¢, §) is
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If L is not a degenerated function of ¢, i.e. if 92L/dG* # 0, then the Euler-Lagrange equation is
of fourth order in ¢ and thus four initial conditions are required: q(t1), ¢(t1), G(t1) and ¢ (t1).
Therefore, four canonical coordinates are needed.

We assume that L has no explicit time-dependence. Then time-translation invariance implies
conservation of energy and 9L/0t = 0. Using then the Euler-Lagrange equation (3), it follows
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is conserved and can be identified with the Hamiltonian. This suggests the following choice for
the canonical variables,
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Now we have to show that

H(Py, Py,Q1,Q2) = PiQq1 + P2Q2 — L
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where ¢ should be expressed as function of the P; and the @Q; leads to the correct time evolution.
The assumption of non-degeneracy gurantees that we can solve for

d=f(Q1,Q2, ).

Here, f can be choosen to be independent of e.g. P, because L = L(q, ¢,{) depends only ony
three variables.
The first Hamilton equation is trivial,
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In the next one we use the chain rule and identify Qo with f = g,
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In the one for @1 we use the Euler-Lagrange equation,
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And in the one for Qs we use Q1 = ¢ = Q2 and P, = OL/d§ to obtain
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Thus H leads to the usual time evolution in phase space of an Hamiltonian system.

The Hamiltonian depends on Pj linearly. Since P; is one of the four canonical variables, it can
be set to an arbitrary initial value. Therefore H is not bounded below.

Some remarks:

e The only assumption in our derivation that the Hamiltonian is unbounded was its non-
degeneracy: this means that one cannot eliminate § in the action by partial integrations.

e Going to even higher derivatives, the situation does not improve: In general,
Py, P, ..., Py_1 appear linearly in H, only Py not. Thus for N > 1, half of the phase-
space variables are unbounded.

e Since energy is conserved, it is classically not problematic that H is unbounded. If we
go on to QFT, this property becomes however disastrous: starting from the vacuum with
energy 2 = 0 we can create a two-particle state with energies F; = —Fjs. Since there is a
continuum of states with this energy (but different 3-momentum direction), this decay is
strongly favoured w.r.t. to the inverse process (compare to the case of an excited hydrogen
atom). This holds even more for the decay to n = 3,4,... particles. Summing all decay
rates, n — oo, the total decay rate of the vacuum diverges. Thus the simple observation
that in our Universe an empty vacuum is stable excludes such systems.

See R.P. Woodard, astro-ph/0601672, for an additional discussion of the instability and the
connection to gravity.
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