Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

1.8 Step function.
Heaviside’s step function ¥(7) is defined by J(7) = 0 for 7 < 0 and ¥(7) = 1 for 7 > 0.
a.) Use Chauchy’s residuum theorem to show that the integral representation
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is valid.

b.) Show that dv(7)/dr = (7).

Using Cauchy’s residue theorem, ¢ dz f(z) = 271 res,, f(z), to calculate the integral requires

to close the integration contour adding a path which gives a vanishing contribution to the integral.
This is achieved, when the integrand e %7 /w vanishes fast enough along the added path. Thus
we have to choose for positive 7 the contour C_ in the lower plane, e %" = ¢~ [SWIT — 0 for
$(w) — —o0, while we have to close the contour in the upper plane for negative 7.
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a.) The residuum res,, f(z) of a function f with a single pole at zj is given by

res;, f(z) = lim (2 — 20) f(2) . (8)
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For 7 < 0, no pole is inside the contour and thus J(7) = 0. For 7 > 0, the pole at wy = —ie gives
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where the first minus sign takes into account that the contour is oriented in the mathematical
negative sense.

b.) We differentiate the integral representation,
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e 9T = §(7) (13)
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