
Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

10.7 Three gauge boson vertex.

Derive the Feynman rule for the three-gluon vertex.

With tr(T a[T b, T c]) = if bcdtr(T aT d) = ifabc/2 we obtain
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Then we go to momentum space performing a Fourier transformation,
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(If the vertex contains derivatives, we have to fix arbitrarily the momentum flow.) Now we can
extract the vertex by taking derivatives w.r.t. to three gauge fields,
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Alternatively, we can argue as follows: The antisymmetry of fabc implies that the indice pairs
(p1, λ), (p2, µ) and (p3, ν) are antisymmetric; we make this antisymmetry explicit by the replace-
ment

gfabcp1µηλν →
1

3!
gfabc[(p3 − p2)ληµν + (p1 − p3)νηλµ + (p2 − p1)µηνλ]

Finally, we note that the factor 1
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is cancelled by the 3!possible permutations and add the factor

i from eiS .
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