12.2 Lambda $\Lambda_{\rm QCD}$.

a.) Show that

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)b_1 \ln(Q^2/\mu^2)}$$
(231)

can be rewritten as

$$\alpha_s(Q^2) = \frac{1}{b_1 \ln \left(Q^2 / \Lambda_{\text{QCD}}^2 \right)}. \tag{232}$$

- b.) Find the relation between $\Lambda_{\rm QCD}$ in the MS and $\overline{\rm MS}$ scheme.
- a.) The general solution (in LO)

$$\frac{1}{\alpha_s(Q^2)} = \frac{1}{\alpha_s(\mu^2)} + b_1 \ln\left(\frac{Q^2}{\mu^2}\right) \tag{233}$$

depends not seperately on $\alpha_s(\mu^2)$ and on μ^2 , but only on a combination of these parameters. We can use instead a single parameter $\Lambda_{\rm QCD}$ defined by $\alpha_s(\Lambda_{\rm QCD}) = \infty$. Integrating $\beta(\alpha_s) = {\rm d}\alpha_s/{\rm d}t$ with this boundary condition gives

$$\ln(Q^2/\Lambda^2) = -\int_{\alpha_s(Q^2)}^{\infty} \frac{\mathrm{d}x}{\beta(x)} = -\int_{\alpha_s(Q^2)}^{\infty} \frac{\mathrm{d}x}{b_1 x^2 (1 + \dots)} = \frac{1}{b_1 \alpha(Q^2)},$$
 (234)

what gives in LO the required relation $\alpha_s(Q^2) = 1/(b_1 \ln(Q^2/\Lambda^2))$.

b.) We integrate $\beta(\alpha_s) = d\alpha_s/dt$, or

$$\ln(Q^2/\Lambda^2) = -\int_{\alpha_s(Q^2)}^{\infty} \frac{\mathrm{d}x}{\beta(x)} = -\int_{\alpha_s(Q^2)}^{\infty} \frac{\mathrm{d}x}{b_1 x^2 (1 + \dots)},$$
 (235)

in LO. We have already shown that the first two coefficients of the beta-function $\beta(\alpha_s) = b_1 \alpha_s^2 + b_c \alpha_s^3 + \ldots$ are independent of the renormalisation scheme, $b_1 = \tilde{b}_1$ and $b_2 = \tilde{b}_2$. Subtracting this expression for Λ and $\tilde{\Lambda}$ in two different schemes gives therefore

$$\ln(\tilde{\Lambda}^2/\Lambda^2) = -\int_{\alpha_s(Q^2)}^{\tilde{\alpha}_s(Q^2)} \frac{\mathrm{d}x}{\beta(x)} \approx -\int_{\alpha_s(Q^2)}^{\tilde{\alpha}_s(Q^2)} \frac{\mathrm{d}x}{b_1 x^2} \approx \frac{1}{2b_1} \left(\frac{1}{\alpha} - \frac{1}{\alpha(1 + c_1 \alpha)} \right) \approx \frac{c_1}{b_1}$$
(236)

for

$$\tilde{\alpha}_s = \alpha_s (1 + c_1 \alpha_s + \dots). \tag{237}$$

Thus

$$\tilde{\Lambda}^2 = \Lambda^2 \exp(c_1/b_1). \tag{238}$$

The renormalization constant for α_s differ by $\ln(4\pi e^{-\gamma})$ in the MS and the $\overline{\text{MS}}$ scheme. Using the RGE for $\tilde{\alpha}_s$ and α_s we have

$$\tilde{\alpha}_s(Q^2) = \alpha_s(Q^2)[1 + b_1 \alpha_s(Q^2) \ln(4\pi e^{-\gamma})]$$
(239)

or $c_1 = b_1 \ln(4\pi e^{-\gamma})$. Thus

$$\Lambda_{\overline{\rm MS}} = \Lambda_{\rm MS} e^{(\ln(4\pi) - \gamma)/2} \simeq 2.66 \Lambda_{\rm MS} \tag{240}$$

(where the numerical value corresponds to $b_1(n_f = 5)$), what is a sizable difference.