Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

12.2 Lambda Aqcp.
a.) Show that
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can be rewritten as 1
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b.) Find the relation between Aqcp in the MS and MS scheme.

a.) The general solution (in LO)
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depends not seperately on a,(u?) and on p?, but only on a combination of these parameters. We
can use instead a single parameter Aqcp defined by as(Aqep) = oo. Integrating (o) = da,/dt
with this boundary condition gives
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what gives in LO the required relation a(Q?) = 1/(b1 In(Q?/A?)).

b.) We integrate (o) = dag/dt, or
o dz e dz
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in LO. We have already shown that the first two coefficients of the beta-function B(a;) = bia? +
bcag’ + ... are indepeqdent of the renormalisation scheme, b; = by and by = by. Subtracting this
expression for A and A in two different schemes gives therefore
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for
as =as(l+cas+...). (237)

Thus .
A% = A% exp(cy /by). (238)

The renormalization constant for oy differ by In(4we™) in the MS and the MS scheme. Using
the RGE for &, and a, we have

@5(Q%) = as(Q*)[1 + b1y (Q%) In(4me ™)) (239)
or ¢; = by In(4me™7). Thus
Asrs = Auise™U™ /2 ~ 2 66 A s (240)

(where the numerical value corresponds to by(ny = 5)), what is a sizable difference.
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