
Quantum Fields|from the Hubble to the Plan
k S
ale Sele
ted Solutions

12.6 Va
uum polarisation and the opti
al theorem.

a.) Derive the imaginary part of the photon polarisation.
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b.) Use the opti
al theorem to 
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t =(�
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) to the de
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and use the tensor method.℄

a.) For some ba
kground see 
hapter 9.1, in parti
ular example 9.1.

We 
an 
onstru
t the imaginary part of the photon propagator from
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using various ways:

Option 1: Find the x range for whi
h the log is negative for a given q
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, and use then = ln(x+i") =

��.
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Option 2: Do �rst the x integral: 
hange variables x =

1

2

(1 + �) and use then

Z

1

�1

d� ln

�

1 + x(1� �

2

)

�

= �4(1� # 
ot#) (254)

Z

1

�1

d��

2

ln

�

1 + x(1� �

2

)

�

= �

4

9

+

4

3

(1� # 
ot#) 
ot

2

# (255)

with sin

2

# = �q
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=(4m
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). Use then ar

ot z = iar

oth iz to obtain the real part for q
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and
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to �nd the imaginary part via the dis
ontinuity.

b.) We apply the opti
al theorem to the 
ase of a de
ay 1! 1
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We want to 
ompare the RHS to the va
uum polarisation �(q

2

), where we fa
tored out the

external photons (and a transverse polarisation proje
tor). Therefore we set A = "
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where we introdu
ed s = k
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Sin
e S
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an be only a fun
tion of k, we use as ansatz
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We determine the 
oeÆ
ients, �rst 
ontra
ting with k
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This results in B = �(s+ 2m
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and we see that S

��

is transverse as required by gauge invarian
e. Now we fa
tor out the

transverse proje
tion operator, and 
onsider only the s
alar part of Eq. (259). Comparing then
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with a.) we �nd agreement.
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Remark 1: We obtained =�(k

2

) as follows: We 
ut the virtual lines, then the diagram T
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de
omposes into T

�

in

and T

ni

. The virtual fermion line 
orresponds now to two external on-shell

parti
le, and therefore the integration is over d
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2!℄ instead d

4
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. This shows also

that the imaginary parts of loop diagrams are �nite. In general, the set of su
h re
ipes to obtain

the imaginary part of a loop diagram are 
alled \ Cutowsky's 
utting rules".

Remark 2: From (256) we see that =T
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) holds. Thus the imaginary part =T
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should be positive. Otherwise the 
hosen va
uum is unstable, and the intensity of a beam of

photons would grow as I(t) = I
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t).
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