Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

12.6 Vacuum polarisation and the optical theorem.
a.) Derive the imaginary part of the photon polarisation.
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b.) Use the optical theorem to connect I(II°") to the decay of a virtual photon v* into a
fermion pair, v* — ff. [Hint: Consider d®® Y7 AL~ Av, and use the tensor method.]

a.) For some background see chapter 9.1, in particular example 9.1.
We can construct the imaginary part of the photon propagator from
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°"(¢%) = (¢%) — T1(0) = 2?0[ /0 dzz(l—2)In [1 - %x(l - a:)] , (252)

using various ways:
Option 1: Find the x range for which the log is negative for a given ¢?, and use then ¥ In(z +ic) =
—T.
From 1 — Lz(1 — ) = 0, it follows 21/, = 5 + 18 with 8 = \/T — 4m?/¢®. Then
1 1
2 5+58
ST (g2 + i€) = —(—) /2 T drz(l-gz) = —%5(1 +2m?/q?). (253)
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Option 2: Do first the = integral: change variables z = %(1 +n) and use then

1
/ dnln [1 4+ z(1 — )] = —4(1 — I cot ) (254)
-1
! 2 2 4 4 2
dnn?In [1 + z(1 — n?)] =—§+§(1—79c0t19)c0t J (255)
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with sin?9 = —¢?/(4m?). Use then arccot z = iarccothiz to obtain the real part for ¢> > 4m?
and
1. z4+1

thz = -1
arccoth z 2n1_z

to find the imaginary part via the discontinuity.

b.) We apply the optical theorem to the case of a decay 1 — 1" + 2/,
29Ty = ) Tj Tni = / do® > Ax Ay (256)
n 51,52

We want to compare the RHS to the vacuum polarisation II(¢?), where we factored out the
external photons (and a transverse polarisation projector). Therefore we set A = ¢,A", and
calculate with A* = u(p;)(iey")v(p2)

S Al AL = ]+ my" (B — m)y] (257)
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= 4¢” [phps + phpy — S0 (258)
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where we introduced s = k> = (p; + p2) = 2p1p2 + m?. Then we recall
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and
s As,mi,m3) s . 4m?
Poms = =4 T4 T s

for m = m1 = mo. Combining this, we obtain
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Since S*¥ can be only a function of k, we use as ansatz
SH = AKFEY + Bnpt” (261)
We determine the coefficients, first contracting with k,k,,

kuky,S" = s(sA + B) (262)

82

= 2(kp1)(kp2) — 5 =0 (263)

and second contracting with 7,,,

NS = sA+ 4B (264)
=2(p1p2) —2s = —(s + 2m2)2 . (265)

This results in B = —(s +2m?)/3 and A = (s + 2m?)/3s. Thus
1
SHY = —5(1 +2m?/s) (k2" — kFEY) = S(E)(K*n* — kMEY) (266)

and we see that S*¥ is transverse as required by gauge invariance. Now we factor out the
transverse projection operator, and consider only the scalar part of Eq. (259). Comparing then

«@ 4m? 1/2
ST, = -3 [1 — T] (1 +2m?/s) (267)

with a.) we find agreement.
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Remark 1: We obtained STI(k?) as follows: We cut the virtual lines, then the diagram Tj;
decomposes into T, and T},;. The virtual fermion line corresponds now to two external on-shell
particle, and therefore the integration is over d3k/[(27)%2w] instead d*k/(27)*. This shows also
that the imaginary parts of loop diagrams are finite. In general, the set of such recipes to obtain
the imaginary part of a loop diagram are called “ Cutowsky’s cutting rules”.

Remark 2: From (256) we see that ST;; = wI'(1 — 1’ + 2') holds. Thus the imaginary part STj;
should be positive. Otherwise the chosen vacuum is unstable, and the intensity of a beam of
photons would grow as I(t) = Iy exp(—23Tjt).
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