Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

13.7 Effective potential in DR.

We want to evaluate
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with m? = V" = —u? +3X¢? in DR. In order to use our standard formulae for Feynman integrals,

we should get rid of the logarithm. One possibility is to take a derivative w.r.t. m? (cf. the
calculation of p in ch. 3 or of the free energy F in ch. 15 of the notes). This option makes also
clear that the one-loop effective potential sums up the zero-point energies. Another one is to use
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Applying the second method, we should evaluate
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Keeping d # 0,2,4, the only term singular for ¢ — 0 is I'(e) ~ 1/e. With f(e) = eg(e) and
g(0) = const., it follows thus f/(0) = ¢g(0). Adding also the renormalisation scale, we arrive at
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where now € = 4 —d. Note the correspondence between poles of the Gamma function and power-
law divergence in cutoff regularisation: In(A) <+ I'(2—d/2), A% +> T'(1—d/2), and A* < T'(—d/2).
Including the classical potential and the counter terms, the effectice potential at one-loop is
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We take the limit e =4 —d — 0,
m? \ %2 m* [2 9, 9v 9

Setting m? — —pu? + 3A\¢Z, the finite parts in B and C can be fixed requiring e.g.
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Or by chooseing the MS or the MS schemes. As a check, you can rederive the RG equation for
A(p) and m(p) requiring the independence of the effective potential from p (cf. for the massless
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case the text).
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