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13.7 Effective potential in DR.

We want to evaluate
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with m2 ≡ V ′′ = −µ2+3λφ2 in DR. In order to use our standard formulae for Feynman integrals,
we should get rid of the logarithm. One possibility is to take a derivative w.r.t. m2 (cf. the
calculation of ρ in ch. 3 or of the free energy F in ch. 15 of the notes). This option makes also
clear that the one-loop effective potential sums up the zero-point energies. Another one is to use

aε = eε ln a = 1 + ε ln a+O(ε2) (262)

or
∂

∂ε
aε|ε=0 = ln(a) (263)

Applying the second method, we should evaluate
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Keeping d 6= 0, 2, 4, the only term singular for ε → 0 is Γ(ε) ∼ 1/ε. With f(ε) = εg(ε) and
g(0) = const., it follows thus f ′(0) = g(0). Adding also the renormalisation scale, we arrive at
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where now ε ≡ 4−d. Note the correspondence between poles of the Gamma function and power-
law divergence in cutoff regularisation: ln(Λ) ↔ Γ(2−d/2), Λ2 ↔ Γ(1−d/2), and Λ4 ↔ Γ(−d/2).
Including the classical potential and the counter terms, the effectice potential at one-loop is
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We take the limit ε = 4− d → 0,
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Setting m2 → −µ2 + 3λφ2
0, the finite parts in B and C can be fixed requiring e.g.

∂Veff
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(φ = µ/

√
λ) = 0 and
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(µ0) = λ . (269)

Or by chooseing the MS or the MS schemes. As a check, you can rederive the RG equation for

λ(µ) and m(µ) requiring the independence of the effective potential from µ (cf. for the massless

case the text).
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