2.2 Propagator as Green function.

Show that the Green function or propagator $K(x', t'; x, t) = \langle x' | \exp[-iH(t'-t)] | x \rangle$ of the Schrödinger equation is the inverse of the differential operator $(i\partial_t - H)$. Hint: It is simpler to consider the advanced or retarded Green functions,

$$G^{\pm}(x',t';x,t) = G(x',t';x,t)\vartheta(\pm\tau)$$
(24)

where $\tau = t' - t$ and ϑ is the step function.

The interpretation of the propagator as the Green's function G of the differential equation $(i\partial_t - H)$ is derived simplest after introducing the advanced and retarded Green's functions,

$$G^{\pm}(x',t';x,t) = G(x',t';x,t)\vartheta(\pm\tau)$$
(25)

where $\tau = t' - t$.¹ Considering e.g. the retarded case,

$$\vartheta(t'-t)\psi(x',t') = i \int d^3x G^+(x',t';x,t)\psi(x,t)$$
(26)

applying the Schrödinger operator $[i\partial_{t'} - H(x')]$ on it, gives

$$\left[i\partial_{t'} - H(x')\right]\vartheta(t'-t)\psi(x',t') = i\int d^3x [i\partial_{t'} - H(x')]G^+(x',t';x,t)\psi(x,t).$$
(27)

The LHS is

$$[\mathrm{i}\partial_{t'}\vartheta(t'-t)]\psi(x',t') + \vartheta(t'-t)\underbrace{[\mathrm{i}\partial_{t'} - H(x')]\psi(x',t')}_{=0} = \mathrm{i}\delta(t'-t)\psi(x',t)$$
(28)

where $\vartheta' = \delta$ and the Schrödinger equation were used. Thus

$$i\delta(t'-t)\psi(x',t) = i\int d^3x [i\partial_{t'} - H(x')]G^+(x',t';x,t)\psi(x,t)$$
(29)

can be valid for an arbitrary solution ψ only if

$$[i\partial_{t'} - H(x')]G^+(x',t';x,t) = \delta^{(4)}(x-x').$$
(30)

Thus the retarded Green's functions G^+ is the inverse of the differential operator $(i\partial_t - H)$. The same reasoning holds for the advanced Green function G^- , and thus also for $G = G^+ + G^-$.

¹The step function $\vartheta(x) = 0$ for x < 0 and $\vartheta(x) = 1$ for x > 0. From its integral representation $\vartheta(\tau) = -\frac{1}{2\pi i} \int d\omega \frac{e^{-i\omega\tau}}{\omega + i\varepsilon}$ one derives $\vartheta' = \delta$.