Quantum Fields—from the Hubble to the Planck Scale Selected Solutions

2.9 Propagator at large |x|.
Show that the propagator K(x,0;0,0) = iAr(0,r decays exponentially outside the light-
cone.

We start from
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where z = cos ¥ is the angle between k and . The integrand in
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is o< ksin(kr), i.e. even. Thus we can first extend it to —oo, then add the odd function o k cos(kr)
and get
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We work now on the last integral. Its has a cut from ik = m to ico; We change k = i(m +y) and
integrate on both sides of the cut,
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In the last step, we used e.g. 3.547(4) from Abramowitz& Stegun. Next we have to perform the
derivative, using K{,(mr) = —mK;(mr). Hence the final result is
) m
iAp(0,7) = o (mr),

i.e. the propagator decays exponentially for space-like separations. The result for time-like sepa-
rations follows by analytic continuation.
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