25.2 Orbits of massive particles.

a. Spherical symmetry allows us to choose $\vartheta = \pi/2$ and $u_{\vartheta} = 0$. Then we replace in the normalization condition $\boldsymbol{u} \cdot \boldsymbol{u} = 1$ written out for the Schwarzschild metric,

$$1 = \left(1 - \frac{2M}{r}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 - \left(1 - \frac{2M}{r}\right)^{-1} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau}\right)^2 - r^2 \left(\frac{\mathrm{d}\phi}{\mathrm{d}\tau}\right)^2$$

the velocities u_t and u_r by the conserved quantities

$$e \equiv \boldsymbol{\xi} \cdot \mathbf{u} = \left(1 - \frac{2M}{r}\right) \frac{\mathrm{d}t}{\mathrm{d}\tau}$$
$$l \equiv \boldsymbol{\eta} \cdot \mathbf{u} = r^2 \sin \vartheta^2 \frac{\mathrm{d}\phi}{\mathrm{d}\tau} = r^2 \frac{\mathrm{d}\phi}{\mathrm{d}\tau}$$

Inserting e and l, then reordering gives

$$\mathcal{E} \equiv \frac{e^2 - 1}{2} = \frac{1}{2} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau}\right)^2 + V_{\mathrm{eff}}(r) \tag{310}$$

with

points.

$$V_{\text{eff}}(r) = -\frac{M}{r} + \frac{l^2}{2r^2} - \frac{Ml^2}{r^3}.$$

Eq. (310) has the same form as in Newtonian gravity, with the only change that the effective potential contains the general relativistic correction term $-Ml^2/r^3$ (suppressed by $1/c^2$) that becomes important at small r. Thus the analysis of possible orbits proceeds as in Newtonian gravity. Note however the different meaning of the variable r in the two cases: In the Newtonian case, the coordinate r equals the physical distance to the star, in the general relativistic case the coordinate r and the distance differ.

b.) The potential is shown in Fig. 1. The asymptotic behavior of V_{eff} for $r \to 0$ and $r \to \infty$ is

$$V_{\rm eff}(r \to \infty) \to -\frac{M}{r}$$
 and $V_{\rm eff}(r \to 0) \to -\frac{Ml^2}{r^3}$, (311)

while the potential at the Schwarschild radius, V(2M) = 1/2, is independent of M. We determine the extrema of V_{eff} by solving $dV_{\text{eff}}/dr = 0$ and find

$$r_{1,2} = \frac{l^2}{2M} \left[1 \pm \sqrt{1 - 12M^2/l^2} \right]$$
(312)

Hence the potential has no extrema for $l/M > \sqrt{12}$ and is always negative: A particle can reach r = 0 for small enough but finite angular momentum, in contrast to the Newtonian case. By the same argument, there exists a last stable orbit at r = 6M, when the two extrema r_1 and r_2 coincide for $l/M = \sqrt{12}$. This so-called "innermost stable circular orbit" at $r_{\rm ISCO} = 6M$ for a Schwarzschild black hole is e.g. relevant for the study of accretion disks around black holes. The orbits can be classified according the relative size of \mathcal{E} and $V_{\rm eff}$ for a given l:

- Bound orbit exists for $\mathcal{E} < 0$. Two circular orbits, one stable at the minimum of V_{eff} and an unstable one at the maximum of V_{eff} ; non-circular orbits oscillate between two turning
 - Scattering orbit exists for $\mathcal{E} > 0$: If $\mathcal{E} > \max\{V_{\text{eff}}\}$, the particle hits after a finite time the singularity r = 0. For $0 < \mathcal{E} < \max\{V_{\text{eff}}\}$, the particle turns at $\mathcal{E} = \max\{V_{\text{eff}}\}$ and escapes to $r \to \infty$.

Figure 1: The effective potential V_{eff} for various values of l/M as function of distance r/M, for two different scales.